模式识别与机器学习(七):集成学习

集成学习

  • 1.概念
    • 1.1 类型
    • 1.2 集成策略
    • 1.3 优势
  • 2. 代码实例
    • 2.1boosting
    • 2.2 bagging
    • 2.3 集成

1.概念

在这里插入图片描述

集成学习是一种机器学习方法,旨在通过组合多个个体学习器的预测结果来提高整体的预测性能。它通过将多个弱学习器(个体学习器)组合成一个强学习器,以获得更准确、更稳定的预测结果。

在集成学习中,个体学习器可以是同质的(使用相同的学习算法,但在不同的训练集上训练)或异质的(使用不同的学习算法)。集成学习的核心思想是通过个体学习器之间的合作和协同来提高整体的预测性能。
在这里插入图片描述

1.1 类型

集成学习可以分为两种主要类型:bagging和boosting。

  1. Bagging(自助聚集法):Bagging是一种基于自助采样的集成学习方法。它通过从原始训练集中有放回地随机采样生成多个新的训练集,然后使用这些训练集分别训练多个个体学习器。最后,通过对个体学习器的预测结果进行投票或平均来得到最终的集成预测结果。常见的Bagging方法包括随机森林(Random Forest)。

  2. Boosting(提升法):Boosting是一种迭代的集成学习方法。它通过依次训练多个个体学习器,每个个体学习器都试图纠正前一个学习器的错误。在每一轮迭代中,Boosting根据样本的权重调整训练集,使得前一个学习器预测错误的样本在后续的训练中得到更多的关注。最终,通过对个体学习器的加权组合来得到最终的集成预测结果。常见的Boosting方法包括AdaBoost、Gradient Boosting和XGBoost。

1.2 集成策略

集成策略是集成方法中用于合并个体学习器预测结果的策略。它决定了如何将个体学习器的预测结果组合起来得到最终的集成预测结果。下面是一些常见的集成策略:

  1. 投票(Voting):对于分类问题,投票是一种常见的集成策略。每个个体学习器对样本进行预测后,最终的预测结果是通过多数投票来决定的。例如,如果有5个个体学习器,其中3个预测为类别A,2个预测为类别B,则最终的预测结果为类别A。

  2. 平均(Averaging):对于回归问题,平均是一种常见的集成策略。每个个体学习器对样本进行预测后,最终的预测结果是通过对个体学习器的预测结果进行平均得到的。例如,如果有5个个体学习器,它们的预测结果分别为[1.2, 1.5, 1.3, 1.4, 1.6],则最终的预测结果为平均值1.4。

  3. 加权平均(Weighted Averaging):加权平均是一种对平均策略的扩展,它给不同的个体学习器赋予不同的权重。权重可以根据个体学习器的性能或其他因素进行分配。例如,性能较好的个体学习器可以被赋予更高的权重,从而在集成预测中起到更大的作用。

  4. 堆叠(Stacking):堆叠是一种更高级的集成策略,它通过训练一个元学习器来组合多个个体学习器的预测结果。在堆叠中,首先将训练集分成多个子集,每个子集用于训练不同的个体学习器。然后,使用这些个体学习器对测试集进行预测,并将它们的预测结果作为新的特征输入到元学习器中进行训练和预测。

这些集成策略可以根据具体的问题和需求进行选择和组合。不同的集成策略适用于不同的情况,可以根据个体学习器的性能、数据集的特点和任务的要求来选择最合适的集成策略。

1.3 优势

集成学习的优势在于它能够通过组合多个个体学习器的优势来弥补单个学习器的缺点,从而提高整体的泛化能力和鲁棒性。它在许多机器学习任务中都取得了很好的效果,并成为了一种常用的技术。

2. 代码实例

2.1boosting

Boosting是一种集成学习方法,通过迭代训练一系列基本学习器,每个基本学习器都会根据前一个学习器的表现进行调整,以提高整体性能。下面是Boosting的详细介绍:
在这里插入图片描述

  1. 基本概念:Boosting的核心思想是将多个弱学习器组合成一个强学习器。弱学习器是指在某个学习任务上表现略好于随机猜测的学习器,而强学习器则是在该任务上表现较好的学习器。

  2. 迭代过程:Boosting通过迭代的方式生成一系列基本学习器。每个基本学习器都会根据前一个学习器的表现进行调整,使得前一个学习器在错误样本上的权重增加,从而更加关注错误样本,提高整体性能。

  3. 加权投票:在预测阶段,Boosting会对每个基本学习器进行加权投票,将各个学习器的预测结果进行加权组合,得到最终的预测结果。通常,表现较好的学习器会被赋予更高的权重。

  4. AdaBoost算法:AdaBoost是Boosting的一种经典算法。它通过调整样本的权重来训练基本学习器,每个基本学习器的权重由前一个学习器的错误率决定。AdaBoost在每一轮迭代中,都会调整样本的权重,使得前一个学习器错误分类的样本权重增加,从而使得后续学习器更加关注这些错误样本。

  5. Gradient Boosting算法:Gradient Boosting是另一种常用的Boosting算法。它通过梯度下降的方式训练基本学习器,每个基本学习器都会拟合前一个学习器的残差。Gradient Boosting在每一轮迭代中,都会计算残差,并将残差作为新的目标进行训练。

Boosting是一种强大的集成学习方法,能够有效提高模型的性能。它在实际应用中广泛使用,如梯度提升树(Gradient Boosting Trees)和XGBoost等。
以下是一个使用Python中的scikit-learn库实现AdaBoost算法的简单代码示例:

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 生成一个示例数据集
X, y = make_classification(n_samples=100, n_features=10, random_state=42)# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建AdaBoost分类器
clf = AdaBoostClassifier(n_estimators=50, random_state=42)# 在训练集上拟合分类器
clf.fit(X_train, y_train)# 在测试集上进行预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在这个示例中,我们首先使用make_classification函数生成一个包含100个样本和10个特征的示例数据集。然后,我们将数据集拆分为训练集和测试集。接下来,我们创建一个AdaBoost分类器,并使用训练集对其进行拟合。最后,我们使用测试集进行预测,并计算预测准确率。

2.2 bagging

Bagging(Bootstrap Aggregating)是一种集成学习方法,通过随机有放回抽样生成多个训练集,每个训练集用于训练一个基本学习器,最后通过投票或平均来进行预测。下面是Bagging的详细介绍:
在这里插入图片描述

  1. 基本概念:Bagging的核心思想是通过构建多个基本学习器的集合来提高整体性能。每个基本学习器都是在不同的训练集上独立训练得到的,最后通过集成基本学习器的预测结果来进行最终的预测。

  2. Bootstrap抽样:Bagging使用Bootstrap抽样技术生成多个训练集。Bootstrap抽样是一种有放回的抽样方法,从原始训练集中随机抽取样本,生成与原始训练集大小相同的新训练集。由于有放回抽样,新训练集中可能包含重复的样本,也可能有部分样本未被抽到。

  3. 基本学习器:每个训练集用于训练一个基本学习器。基本学习器可以是同一种学习算法的不同实例,也可以是不同的学习算法。通过在不同的训练集上独立训练基本学习器,可以获得多个学习器的集合。

  4. 集成预测:在预测阶段,Bagging通过对基本学习器的预测结果进行投票(分类问题)或平均(回归问题)来得到最终的预测结果。对于分类问题,可以采用多数投票的方式,选择预测结果最多的类别作为最终预测结果。

  5. 随机森林(Random Forest):随机森林是一种基于Bagging和决策树的集成学习方法。它通过随机选择特征子集和样本子集来构建多个决策树,并通过投票来进行预测。随机森林在每个决策树的训练过程中,都会使用随机选择的特征子集,以增加模型的多样性。

Bagging是一种简单而有效的集成学习方法,能够减少模型的方差,提高模型的稳定性和泛化能力。它在实际应用中广泛使用,如随机森林和Bagging分类器等。
以下是一个使用Python中的scikit-learn库实现Bagging算法的简单代码示例:

from sklearn.ensemble import BaggingClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier# 生成一个示例数据集
X, y = make_classification(n_samples=100, n_features=10, random_state=42)# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建基本学习器(决策树)
base_estimator = DecisionTreeClassifier()# 创建Bagging分类器
clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=50, random_state=42)# 在训练集上拟合分类器
clf.fit(X_train, y_train)# 在测试集上进行预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在这个示例中,我们首先使用make_classification函数生成一个包含100个样本和10个特征的示例数据集。然后,我们将数据集拆分为训练集和测试集。接下来,我们创建一个基本学习器(这里使用决策树),并使用基本学习器创建一个Bagging分类器。最后,我们使用训练集对Bagging分类器进行拟合,并使用测试集进行预测,计算预测准确率。

2.3 集成

这是一个使用投票策略的集成分类器的示例代码。以下是一个使用Python编写的示例:

from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义三个不同的分类器
clf1 = DecisionTreeClassifier(random_state=42)
clf2 = KNeighborsClassifier()
clf3 = SVC(probability=True)# 定义投票分类器
voting_clf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='hard')# 训练投票分类器
voting_clf.fit(X_train, y_train)# 在测试集上进行预测
y_pred = voting_clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

在这个示例中,我们使用了三个不同的分类器(决策树、K近邻和支持向量机)来构建一个投票分类器。通过VotingClassifier类,我们将这三个分类器组合在一起,并使用voting='hard'来指定使用硬投票策略。然后,我们使用训练集对投票分类器进行训练,并在测试集上进行预测。最后,我们使用accuracy_score函数计算预测结果的准确率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211444.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

空间金字塔池化(SPP,Spatial Pyramid Pooling)系列

空间金字塔池化的作用是解决输入图片大小不一造成的缺陷,同时在目标识别中增加了精度。空间金字塔池化可以使得任意大小的特征图都能够转换成固定大小的特征向量,下面针对一些典型的空间金字塔进行盘点。 部分图片来自blog:空间金字塔池化改进 SPP / SP…

Jmeter接口自动化测试 —— Jmeter断言之Json断言

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…

PHP:js中怎么使用PHP变量,php变量为数组时的处理

方法一&#xff1a;使用内嵌 PHP 脚本标记 1、简单的拼接 使用内嵌的 PHP 脚本标记 <?php ?> 将 PHP 变量 $phpVariable 的值嵌入到 JavaScript 代码中。 <?php $phpVariable "Hello, World!"; ?><script> // 将 PHP 变量的值传递给 JavaS…

软著项目推荐 深度学习图像风格迁移 - opencv python

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习图像风格迁移 - opencv python 该项目较为新颖&#xff0c;适合作为竞赛课题…

游戏:火星孤征 - deliver us mars - 美图秀秀~~

今天水一篇&#xff0c;借着免费周下载了deliver us mars&#xff0c;玩下来截了好多图&#xff0c;就放这里了。 游戏没有难度&#xff0c;剧情也不难理解&#xff0c;美图到处都是&#xff0c;建模细节也是满满&#xff0c;值得一玩。 游戏中的 A.S.E是守卫飞行机器人&…

在Vivado 仿真器中搭建UVM验证环境(不需要联合modelsim)

Vivado 集成设计环境支持将通用验证方法学 (UVM) 应用于 Vivado 仿真器。Vivado 提供了预编译的 UVM V1.2 库。 &#xff08;1&#xff09;在 Vivado 2019.2 中创建新 RTL 工程。 &#xff08;2&#xff09;单击“添加目录 (Add Directories)”以将“src”和“verif”目录添加…

揭秘Etsy店群模式:Etsy多账户关联如何解决?如何创建多个账户?

Etsy是美国一个在线销售原创手工工艺品的网站&#xff0c;以手工艺成品买卖为主要特色 &#xff0c;曾被纽约时报拿来和eBay&#xff0c;Amazon和“祖母的地下室收藏”比较。近年来作为热门的电商平台吸引了大量跨境玩家是从事电子商务的人熟悉的平台。但它有一个很大的限制&am…

Python推导式详细讲解

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 在Python中&#xff0c;推导式是一种简洁而强大的语法特性&#xff0c;可以用来创建列表、集合、字典等数据结构。本文将深入探讨Python中的三种推导式&#xff1a;列表推导式、集合推导式和字典推导式&#xff…

Open3D 最小二乘拟合二维直线(直接求解法)

目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。爬虫网站自重。 一、算法原理 平面直线的表达式为: y = k x + b

Python-炸弹人【附完整源码】

炸弹人 炸弹人是童年的一款经典电子游戏&#xff0c;玩家控制一个类似"炸弹人"的角色&#xff0c;这个角色可以放置炸弹&#xff0c;并在指定的时间内引爆它们消灭敌人以达到目标&#xff0c;此游戏共设有两节关卡&#xff0c;代码如下&#xff1a; 运行效果&#x…

二叉搜索树——模拟

对于一个无穷的满二叉排序树&#xff08;如图&#xff09;&#xff0c;节点的编号是1,2,3&#xff0c;…。对于一棵树根为X的子树&#xff0c;沿着左节点一直往下到最后一层&#xff0c;可以获得该子树编号最小的节点&#xff1b;沿着右节点一直往下到最后一层&#xff0c;可以…

『亚马逊云科技产品测评』活动征文| 基于etcd实现服务发现

提示&#xff1a;授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 背景 etcd 是一个分布式 Key-Value 存储系统&#xff0…

IP地址定位不准确的情况研究

在互联网的浩瀚海洋中&#xff0c;每一台连接到网络的设备都被赋予了一个独特的标识符&#xff0c;这就是IP地址。它就像是我们在线身份的一部分&#xff0c;帮助我们与他人进行通信&#xff0c;获取信息&#xff0c;以及享受各种网络服务。然而&#xff0c;由于各种原因&#…

【LVS实战】04 LVS+Keepalived实现负载均衡高可用

一、介绍 Keepalived 是一个用于 Linux 平台的高可用性软件。它实现了虚拟路由器冗余协议 (VRRP) 和健康检查功能&#xff0c;可以用于确保在多台服务器之间提供服务的高可用性。Keepalived 可以检测服务器的故障&#xff0c;并在主服务器宕机时&#xff0c;自动将备份服务器提…

哈希表及其基础(java详解)

目录 一、哈希表基础 二、哈希函数的设计 哈希函数的设计原则 三、java中的hashCode 基本数据类型的hashCode使用 自定义类型的hashCode使用 需要注意 四、哈希冲突的处理 链地址法Seperate Chaining 五、实现属于我们自己的哈希表 六、哈希表的动态空间处理和复杂…

10、外观模式(Facade Pattern,不常用)

外观模式&#xff08;Facade Pattern&#xff09;也叫作门面模式&#xff0c;通过一个门面&#xff08;Facade&#xff09;向客户端提供一个访问系统的统一接口&#xff0c;客户端无须关心和知晓系统内部各子模块&#xff08;系统&#xff09;之间的复杂关系&#xff0c;其主要…

vscode插件离线下载

离线下载插件地址&#xff1a;https://marketplace.visualstudio.com/VSCode

SQL server 基线安全加固操作

目录 账号管理、认证授权 ELK-Mssql-01-01-01 ELK-Mssql-01-01-02 ELK-Mssql-01-01-03 ​​​​​​​ ELK-Mssql-01-01-04 ​​​​​​​ ELK-Mssql-01-01-05 ​​​​​​​ELK-Mssql-01-01-06 日志配置 ELK-Mssql-02-01-01 通信协议 ELK-Mssql-03-01-01 ​​​​​…

【i.MX6ULL】linux驱动bh1750模块

I2C-BH1750 1、设备地址 引脚说明 VCC5VGNDGNDSCLPB6SDAPB7ADDRVCC/GND bh1750设备的地址由引脚 ADDR 来决定 ADDR接GND 当ADDR引脚接地时设备bh1750的地址为&#xff1a;0x23(7bit) ADDR接VCC 当ADDR引脚接地时设备bh1750的地址为&#xff1a;0x5c(7bit) 2、工作模式 …

基于深度学习CRNN的水表读数识别系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着科技的不断发展&#xff0c;深度学习技术在各个领域都取得了显著的成果。其中&#xff0c;基于深度学习的图像识别技术在计算机视觉领域具有重要的应用价值。…