深度学习手势检测与识别算法 - opencv python 计算机竞赛

文章目录

  • 0 前言
  • 1 实现效果
  • 2 技术原理
    • 2.1 手部检测
      • 2.1.1 基于肤色空间的手势检测方法
      • 2.1.2 基于运动的手势检测方法
      • 2.1.3 基于边缘的手势检测方法
      • 2.1.4 基于模板的手势检测方法
      • 2.1.5 基于机器学习的手势检测方法
    • 3 手部识别
      • 3.1 SSD网络
      • 3.2 数据集
      • 3.3 最终改进的网络结构
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像识别手势检测识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:

# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): for j in  range(0, y):if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):skin2[i][j] =  255else:skin2[i][j] =  0cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。

1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal     # 导入sicpy的signal模块# Laplace算子
suanzi1 = np.array([[0, 1, 0],  [1,-4, 1],[0, 1, 0]])# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],[1,-8, 1],[1, 1, 1]])# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212203.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时间序列预测实战(二十五)PyTorch实现Seq2Seq进行多元和单元预测(附代码+数据集+完整解析)

一、本文介绍 本文给大家带来的时间序列模型是Seq2Seq&#xff0c;这个概念相信大家都不陌生了&#xff0c;网上的讲解已经满天飞了&#xff0c;但是本文给大家带来的是我在Seq2Seq思想上开发的一个模型和新的架构&#xff0c;架构前面的文章已经说过很多次了&#xff0c;其是…

更改AndroidStudio模拟器位置

C盘何等的珍贵&#xff0c;可是好多工具&#xff0c;软件非得默认安装在C盘。。导致C盘越来越紧张。。 在日常使用过程中&#xff0c;安装任何软件都会将其安装到非系统盘下&#xff0c;Android模拟器也不能例外。保护好C盘也是日常一个良好的习惯。 Android AVD默认路径&…

计算n的阶乘-递归与迭代之间的相爱相杀

n的阶乘是指从1连乘到n的结果&#xff0c;通常用符号n!表示。例如&#xff0c;3的阶乘表示为3!&#xff0c;计算过程如下&#xff1a; 3! 3 2 1 6 一般地&#xff0c;n的阶乘可以用递归或迭代的方式计算&#xff0c;公式为&#xff1a; n! n (n-1) (n-2) ... 2 1 …

Adobe ColdFusion文件读取漏洞(CVE-2010-2861)

任务一&#xff1a; 复现漏洞 任务二&#xff1a; 尝试利用漏洞读取目标系统中的“opt/coldfusion8/license.txt"文件 1.环境搭建&#xff08;网上写的密码是admin&#xff0c;就用admin&#xff09; 2.看答案就是一层一层进行路径穿越攻击&#xff0c;这里要注意如果…

史上最强 Charles 抓包

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

netcore swagger 错误 Failed to load API definition

后端接口报错如下&#xff1a; 前端nswag报错如下&#xff1a; 根据网上查询到的资料说明&#xff0c;说一般swagger这种错误都是控制器里有接口代码异常造成的&#xff0c;通常是接口没有加属性Attribute&#xff0c; 比如[HttpPost("Delete")]、[HttpGet("Del…

Kafka Connect :构建强大分布式数据集成方案

Kafka Connect 是 Apache Kafka 生态系统中的关键组件&#xff0c;专为构建可靠、高效的分布式数据集成解决方案而设计。本文将深入探讨 Kafka Connect 的核心架构、使用方法以及如何通过丰富的示例代码解决实际的数据集成挑战。 Kafka Connect 的核心架构 Kafka Connect 的核…

flutter开发实战-readmore长文本展开和收缩控件

flutter开发实战-readmore长文本展开和收缩控件 当长文本展开和收缩控件&#xff0c;我们需要使用readmore来处理长文本展开和收缩&#xff0c;方便阅读 一、引入readmore 在工程的pubspec.yaml中引入插件 readmore: ^2.1.0ReadMoreText的属性如下 const ReadMoreText(this.…

MySQL 临时数据空间不足导致SQL被killed 的问题与扩展

开头还是介绍一下群&#xff0c;如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题&#xff0c;有需求都可以加群群内&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;&#xff08;共1730人左右 1 2 3 4 5&#xff0…

elementui中添加开关控制

<template><!-- 图层管理 --><div class"home-wrapper"><div class"table-list"><div class"list"><el-table :data"tableData" height"100%" style"width: 100%;" border>&…

Python 爬虫 之scrapy 框架

文章目录 常用的命令开始爬虫请求与响应让控制台只输出想要的信息创建一个py 文件来帮忙运行爬虫 工作原理图实战scrapy 本身自带的选择器使用全部scrapy 自身选择器进行爬虫爬取多个网站 常用的命令 Scrapy是一个用于爬取网站数据的Python框架&#xff0c;以下是一些常用的Sc…

activemq启动成功但web管理页面却无法访问

前提&#xff1a; 在linux启动activemq成功&#xff01;本地能ping通linux 处理方案&#xff1a; 确定防火墙是否关闭&#xff0c; 有两种处理方案&#xff1a;第一种-关闭防火墙&#xff1b;第二种-暴漏8161和61616两个端口 netstat -lnpt查看8161和61616端口 注意&#xf…

JavaWeb-Tomcat

1. Web服务器 web服务器由硬件和软件组成&#xff1a; 硬件&#xff1a;计算机系统软件&#xff1a;计算机上安装的服务器软件&#xff0c;安装后可以为web应用提供网络服务。 常见的JavaWeb服务器&#xff1a; Tomcat&#xff08;Apache&#xff09;&#xff1a;应用最广泛的…

Java毕业设计源码—vue+SpringBoot图书借阅管理图书馆管理系统

主要技术 SpringBoot、Mybatis-Plus、MySQL、Vue3、ElementPlus等 主要功能 管理员模块&#xff1a;注册、登录、书籍管理、读者管理、借阅管理、借阅状态、修改个人信息、修改密码 读者模块&#xff1a;注册、登录、查询图书信息、借阅和归还图书、查看个人借阅记录、修改…

第二十一章

网络通信这一章 基本分为三个部分 网络基础概念和TCP,UDP这三个部分主要如下&#xff1a; 计算机网络实现了堕胎计算机间的互联&#xff0c;使得它们彼此之间能够进行数据交流。网络应用程序就是再已连接的不同计算机上运行的程序&#xff0c;这些程序借助于网络协议&#xf…

html刷题笔记

1 em 12 pt 16 px 100% source元素为audio、video、picture元素指定多个媒体文件 margin是用来隔开元素与元素的间距&#xff1b;padding是用来隔开元素与内容的间隔。 margin用于布局分开元素使元素与元素互不相干&#xff1b;padding用于元素与内容之间的间隔&#xff0c;…

Swift 中 User Defaults 的读取和写入

文章目录 前言介绍 User Defaults共享 User DefaultsUser Defaults 存储数据类型响应更改监控 User Defaults 更改覆盖User Defaults 设置考虑的替代方案Keychain 用于安全性用于跨平台的 CloudKit 结论 前言 User Defaults 是 Swift 应用程序存储在应用启动之间保持的首选项的…

我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)

图像处理一 一、阈值处理1.1 OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold()&#xff0c;用于实现阈值处理1.1.1. cv2.threshold()&#xff1a;(1)在函数cv2.threshold()中&#xff0c;参数threshold_type用于指定阈值处理的方式。它有以下几种可选的阈值类…

应用程序中实现用户隐私合规和数据保护合规的处理方案及建议

随着移动互联网的发展&#xff0c;用户隐私合规和数据保护合规已经成为应用开发过程中不可忽视的重要环节。为了帮助开发者实现隐私和数据保护合规&#xff0c;本文将介绍一些处理方案和建议。 图片来源&#xff1a;应用程序中实现用户隐私合规和数据保护合规的处理方案及建议 …

Spring IOC,DI原理保姆级带你了解如,让面试官感到你的魅力

Spring IOC&#xff0c;DI原理保姆级带你了解如&#xff0c;让面试官感到你的魅力 一&#xff0c;什么是IOC 1.开始&#xff1a;Spring IoC容器的创建。 容器初始化&#xff1a;初始化IoC容器&#xff0c;包括加载配置文件、解析配置文件等。 加载XML/Java配置文件&#xff1…