机器学习(2)回归

0.前提

上一期,我们简单的介绍了一些有关机器学习的内容。学习机器学习的最终目的是为了服务我未来的毕设选择之一——智能小车,所以其实大家完全可以根据自己的需求来学习这门课,我做完另一辆小车后打算花点时间去进行一次徒步行,回来就开始专心积累底层知识了(回归轻松时刻,去考试,本来预期是一个学期更新大概25篇文章的,现在看其实已经完全超过预期了)。

1.线性回归

1.线性回归的概念

线性回归:一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。

如图为单变量的线性回归,蓝点为真实数据,红点为预测数据,红点与红线重合度越高,数据拟合的效果越好。

2.符号定义

·m代表训练集中样本的数量

·n代表特征的数量

·x代表特征/输入变量

·y代表目标变量/输出变量

·(x,y)代表训练集中的样本

·(x^{(i)},y^{(i)})代表第i个观察样本

·h代表学习算法的解决方案或函数也称为假设

·\widehat{y}=h(x)代表预测值

·x^{(i)}是特征矩阵中的第i行,是向量

·x_{j}^{(i)}是代表特征矩阵中第i行的第j个特征

3.算法流程

h(x)=w_{0}+w_{1}x_{1}+w_{2}x_{2}+...+w_{n}x_{n}

·损失函数:度量样本预测的错误程度,损失函数值越小,模型就越好。常用的损失函数包括:0-1损失函数、平方损失函数、绝对损失函数、对数损失函数等;损失函数采用平方和损失:l(x^{(i)})=\frac{1}{2}(h(x^{(i)})-y^{(i)})^{2},损失函数的1/2是为了便于计算,使对平方项求导后的常数系数为1。

·代价函数:也称成本函数,度量全部样本集的平均误差。常用的代价函数包括均方误差、均方根误差、平均绝对误差等;残差平方和:J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}

·目标函数:代价函数和正则化函数,最终要优化的函数。

4.线性回归求解

求解 :min\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}的一组w,常见的求残差平方和最小的方法为最小二乘法和梯度下降法。

2.最小二乘法(LSM)

·其实就是求\frac{\partial J(w)}{\partial w}最小

·将向量表达形式转为矩阵表达形式,J(w)=\frac{1}{2}(Xw-Y)^{2},X为mn+1列的矩阵(m为样本个数,n为特征个数),wn+1行1列的矩阵(包含了w_{0}),Y为m行1列的矩阵:
J(w)=\frac{1}{2}(Xw-Y)^{2}=J(w)=\frac{1}{2}(Xw-Y)^{T}(Xw-Y)
·J(w)求偏导:
\frac{\partial J(w)}{\partial w}=\frac{1}{2}\frac{\partial (Xw-Y)^{T}(Xw-Y)}{\partial w}=X^{T}Xw-X^{T}Y
·结果:
w=(X^{T}X)^{^{-1}}X^{T}Y

3.梯度下降

梯度下降有3种形式:批量梯度下降、随机梯度下降、小批量梯度下降。

1.批量梯度下降(BGD)

批量梯度下降:梯度下降的每一步中,都用到了所有的训练样本。

参数更新:w_{j}:=w_{j}-\alpha \frac{1}{m}\sum_{i=1}^{m}((h(x^{(i)})-y^{(i)})·x_{j}^{(i)}) (同步更新w_{j}(j=0,1,...,n)),\alpha代表学习率,(h(x^{(i)})-y^{(i)})·x_{j}^{(i)}代表梯度。

2.随机梯度下降(SGD)

随机梯度下降:梯度下降的每一步中,用到一个样本,在每一次计算后更新参数,而不需要将所有的训练集求和。

参数更新:w_{j}:=w_{j}-\alpha((h(x^{(i)})-y^{(i)})·x_{j}^{(i)})(同步更新w_{j}(j=0,1,...,n)

3.小批量梯度下降(MBGD)

梯度下降的每一步,用到一定批量的训练样本,每计算常数𝑏次训练实例,更新一次参数 w
参数更新:w_{j}:=w_{j}-\alpha \frac{1}{b}\sum_{k=i}^{i+b-1}((h(x^{(k)})-y^{(k)})·x_{j}^{(k)})(同步更新 w_{j}(j=0,1,...,n)),当b=1时是随机梯度下降,b=m时是批量梯度下降,b=2的指数倍数(常见32、64、128等)时为小批量梯度下降

4.梯度下降与最下二乘法的比较

1.梯度下降

需要选择学习率\alpha,要多次迭代,当特征数量n较大时能较好适用,适用各种类型的模型。

2.最小二乘法

不需要选择学习率\alpha,一次计算得出,需要计算(X^{T}X)^{-1},如果特征数量n较大则运算代价大,因为矩阵逆得计算时间复杂度为0(n^{3}),一般当n小于10000时可以接受,只适用于线性模型,不适合逻辑回归等其他模型。

5.数据归一化/标准化

1.作用

标准化/归一化可以提升模型精度和加速模型收敛。

2.归一化(最大-最小规范化)

x^{*}=\frac{x-x_{min}}{x_{max}-x_{min}},将数据映射到[0,1]区间,数据归一化的目的是使得各特征对目标变量得影响一致,会将特征数据进行伸缩变化,所以数据归一化是会改变特征数据分布的。

3.Z-Score标准化

x^{*}=\frac{x-\mu }{\sigma },其中\sigma ^{2}=\frac{1}{m}\sum_{i=1}^{m}(x^{(i)}-\mu )^{2},\mu =\frac{1}{m}\sum_{i=1}^{m}x^{(i)},处理后的数据均值为0,方差为1,数据标准化为了不同特征间具备可比性,经过标准化变换后的特征数据分布没有改变,当数据特征取值范围或单位差异较大时,最好做标准化处理。

4.是否需要做数据归一化/标准化

1.需要

线性模型,如基于距离度量的模型包括KNN(K近邻)、K-means聚类、感知机和SVM。另外,线性回归类的几个模型一般情况下也是需要做数据归一化/标准化处理的。

2.不需要
决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取值大小并不敏感,如随机森林、XGBoost、LightGBM等树模型,以及朴素贝叶斯,以上这些模型一般不需要做数据归一化/标准化处理。

6.正则化

1.拟合

注释:拟合就好比成绩与刷题量之间的关系:欠拟合就是你刷题量特别少,考试得到的分数比你想象中的要低,这就说明欠拟合了;过拟合就是你知道刷题能提高成绩,然后一天16个小时都在刷题,是的你成绩变高了,但是你只是读了万卷书没能行万里路,这就是过拟合了;正合适就是,你刷了一定量的题,成绩不错,同时你也行了万里路,这就是正合适。

2.处理过拟合

1.获取更多的训练数据

使用更多的数据能有效解决过拟合,更多的数据样本能让模型学习更多更有效的特征,减少噪声影响。

2.降维

丢弃一些偏差较大的样本特征,手动选择保留的特征,也可以使用一些模型选择算法。

3.正则化

保留所有特征,减少参数大小,可以改善或减少过拟合问题。

4.集成学习

将多个模型集成在一起,来降低单一模型的过拟合风险。

3.处理欠拟合

1.添加新特征

特征不足或者现有特征与样本标签相关性不强时,模型容易欠拟合。挖掘组合新特征,效果会有所改善。

2.增加模型复杂度

简单模型学习能力差,增加模型的复杂度可以使模型有更强的拟合能力。例如:线性模型中添加高次项,神经网咯模型中增加网络层数或神经元个数等。

3.减小正则化系数
正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。

4.正则化

·λ为正则化系数,调整正则化项与训练误差的比例,λ>0。

·1≥ρ≥0为比例系数,调整L1正则化与L2正则化的比例。

1.L1正则化

J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}+\lambda \sum_{j=1}^{n}|w_{j}|,(Lasso回归)

2.L2正则化

J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}+\lambda \sum_{j=1}^{n}w_{j}^{2},(岭回归)

3.Elastic Net

J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}+\lambda (\rho .\sum_{j=1}^{n}|w_{j}|+(1-\rho ).\sum_{j=i}^{n}w_{j}^{2}),(弹性网络)

7.回归的评价指标

y^{(i)}代表第i个样本的真实值;\widehat{y}^{(i)}代表第i个样本的预测值;m为样本个数。

1.均方误差(MSE)

MSE=\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}-\widehat{y}^{(i)})^{2}

2.平均绝对误差(MAE)

MAE(y,\widehat{y})=\frac{1}{m}\sum_{i=1}^{m}|y^{(i)}-\widehat{y}^{(i)}|

3.均方跟误差(RMSE)

RMSE(y,\widehat{y})=\sqrt{\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}-\widehat{y}^{(i)})^{2}}

8.总结 

在这里我强烈推荐大家去看一下吴恩达老师的课程,非常感谢大佬能将老师的课程翻译过来,当然,少看中文翻译能更好的克服语言障碍。

 (强推|双字)2022吴恩达机器学习Deeplearning.ai课程_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212513.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】Faker库详解:创建测试数据轻而易举

Python Faker库详解:创建测试数据轻而易举 在软件开发和测试过程中,通常需要大量的测试数据来模拟真实环境。Python的Faker库为开发者提供了一个方便、灵活且强大的工具,用于生成各种虚构数据。本文将深入介绍Faker库,演示其基本…

[BJDCTF2020]EzPHP 许多的特性

这道题可以学到很多东西 静下心来慢慢通过本地知道是干嘛用的就可以学会了 BJDctf2020 Ezphp_[bjdctf2020]ezphp-CSDN博客 这里开始 一部分一部分看 $_SERVER[QUERY_SRING]的漏洞 if($_SERVER) { if (preg_match(/shana|debu|aqua|cute|arg|code|flag|system|exec|passwd|…

PHP使用mkcert本地开发生成HTTPS证书 PhpEnv集成环境

PHP使用mkcert本地开发生成HTTPS证书 PhpEnv集成环境 前言一、介绍 mkcert二、安装/使用 mkcert1. 安装2. 使用 总结 前言 本地开发时有些功能只有在 https 证书的情况下才能使用, 例如一些 Web API 一、介绍 mkcert Github地址 mkcert 是一个制作本地可信开发证书的简单工具。…

Vue 静态渲染 v-pre

v-pre 指令&#xff1a;用于阻止 Vue 解析这个标签&#xff0c;直接渲染到页面中。 语法格式&#xff1a; <div v-pre> {{ 数据 }} </div> 基础使用&#xff1a; <template><h3>静态渲染 v-pre</h3><p v-pre>静态渲染&#xff1a;{{ n…

Java (JDK 21) 调用 OpenCV (4.8.0)

Java 调用 OpenCV 一.OpenCV 下载和安装二.创建 Java Maven 项目三.其他测试 一.OpenCV 下载和安装 Open CV 官网 可以下载编译好的包&#xff0c;也可以下载源码自行编译 双击安装 opencv-4.8.0-windows.exe 默认为当前目录 安装即解压缩 根据系统位数选择 将 x64 目录下 op…

Elasticsearch:评估 RAG - 指标之旅

作者&#xff1a;Quentin Herreros&#xff0c;Thomas Veasey&#xff0c;Thanos Papaoikonomou 2020年&#xff0c;Meta发表了一篇题为 “知识密集型NLP任务的检索增强生成” 的论文。 本文介绍了一种通过利用外部数据库将语言模型 (LLM) 知识扩展到初始训练数据之外的方法。 …

css 元素前后添加图标(::before 和 ::after 的妙用)

<template><div class"container"><div class"label">猜你喜欢</div></div> </template><style lang"scss" scoped> .label {display: flex;&::before,&::after {content: "";widt…

Matlab使用基础

基本命令 clear all %清除Workspace中的所有变量 clc %清除Command Window中的所有命令 %和%%是注释 whos%显示当前内存中的变量信息基础函数 abs()%取绝对值 char(65)%将ASCII码数值变成字符 num2str(65)%将里面的内容变成字符串 length()%字符串长度&#xff0c;不把/0的长…

文本润色工具有哪些,高质量的文本润色软件

在当今信息过载的时代&#xff0c;文本的重要性愈发凸显。即便是最精心构思的文章&#xff0c;若未经过仔细的润色&#xff0c;也难以达到最佳的表达效果。本文将专心分享文本润色工具的种类。 文本润色工具的种类 文本润色工具根据其功能和应用范围可以分为多个种类&#xff…

Android 13 Settings蓝牙列表卡顿问题排查及优化过程

一.背景 此问题是蓝牙列表界面息屏后再点击亮屏蓝牙界面卡住,划不动也不能返回,在人多的时候(附近开启的蓝牙设备过多的时候)会卡住大概四五秒才能滑动. 优化前效果见资源: 二.查找耗时点 根据Android Studio的Profiler工具进行排查,查找主线程时间线比较长的方法,如下:…

12.7 作业

1&#xff0c; #include "widget1.h"Widget1::Widget1(QWidget *parent): QWidget(parent) {//界面设置//修改界面大小this->resize(810,600);//固定界面大小this->setFixedSize(800,600);//修改界面的标题this->setWindowTitle("杰哥和阿伟专场"…

数据结构与算法-D7栈实现及应用

顺序栈 具有顺序表同样的存储结构&#xff0c;由数组定义&#xff0c;配合用数组下标表示的栈顶指针top完成操作 sqstack.h stack_creat stack_push stack_empty stack_full 1、判断栈是否为空 2、top--&#xff0c;取&#xff1a;data[top1] stack_top stack_clear stack_fre…

软件工程期末复习(1)

学习资料 软件工程知识点总结_嘤桃子的博客-CSDN博客 软件工程学习笔记_软件工程导论第六版张海藩pdf-CSDN博客 【软件工程】软件工程期末试卷习题课讲解&#xff01;&#xff01;_哔哩哔哩_bilibili 【拯救者】软件工程速成(期末考研复试软考)均适用. 支持4K_哔哩哔哩_bil…

单片机学习13——串口通信

单片机的通信功能&#xff1a; 实现单片机和单片机的信息交换&#xff0c;实现单片机和计算机的信息交换。 计算机通信是指计算机与外部设备或计算机与计算机之间的信息交换。 通信有并行通信和串行通信两种方式。 在多微机系统以及现在测控系统中信息的交换多采用串行通信方…

看图学源码之 CopyOnWriteArrayList 源码分析

基本简介&#xff1a; 是Java中的一个线程安全的List实现&#xff0c;也是ArrayList 的安全版本&#xff0c;所以就不会有ArrayList 的并发修改异常 的问题产生了 原理 每次在对 List 进行修改时&#xff0c;创建一个新的副本&#xff08;即拷贝&#xff09;&#xff0c;而不…

共创共赢|美创科技获江苏移动2023DICT生态合作“产品共创奖”

12月6日&#xff0c;以“5G江山蓝 算网融百业 数智创未来”为主题的中国移动江苏公司2023DICT合作伙伴大会在南京成功举办。来自行业领军企业、科研院所等DICT产业核心力量的百余家单位代表参加本次大会&#xff0c;共话数实融合新趋势&#xff0c;共拓合作发展新空间。 作为生…

Linux环境下用yum安装postgres15

1. 下载PostgreSQL 15 安装包 在官网选择对应版本的安装包 https://www.postgresql.org/download/ Linux | CentOS 7 | PostgreSQL 15 2. 安装PostgreSQL 15 sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-la…

Windows 10安装FFmpeg详细教程

Windows 10安装FFmpeg详细教程 0. 背景 在搭建之前的项目环境时&#xff0c;需要安装ffmpeg&#xff0c;在此记录下过程 1. 官网下载 点击进入官网&#xff1a;ffmpeg&#xff0c;官网地址&#xff1a;https://ffmpeg.org/download.html 如图所示&#xff0c;点击Windows图标…

TCP通信

第二十一章 网络通信 本章节主要讲解的是TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 接下来会一一讲解 TCP通信 TCP通信方式呢 主要的通讯方式是一对一的通讯方式&#xff0c;也有着优点和缺点…

LoadBalancer将服务暴露到外部实现负载均衡purelb-layer2模式配置介绍

目录 一.purelb简介 1.简介 2.purelb的layer2工作模式特点 二.layer2的配置演示 1.首先准备ipvs和arp配置环境 2.purelb部署开始 &#xff08;1&#xff09;下载purelb-complete.yaml文件并应用 &#xff08;2&#xff09;查看该有的资源是否创建完成并运行 &#xff…