推荐4个优秀的 Python 时间序列分析库

时间序列分析在金融和医疗保健等领域至关重要,在这些领域,理解随时间变化的数据模式至关重要。在本文中,我们将介绍四个主要的Python库——statmodels、tslearn、tssearch和tsfresh——每个库都针对时间序列分析的不同方面进行了定制。这些库为从预测到模式识别的任务提供了强大的工具,使它们成为各种应用程序的宝贵资源。

我们使用来自Kaggle的数据集,通过加速度计数为各种身体活动进行分析。这些活动被分为12个不同的类别,每个类别对应一个特定的身体动作,如站立、坐着、行走,或从事更有活力的活动,如慢跑和骑自行车。每个活动都记录了一分钟的持续时间,提供了丰富的时间序列数据源。

用于此分析的库有:

 # statsmodelsfrom statsmodels.tsa.seasonal import seasonal_decomposefrom statsmodels.tsa.stattools import adfullerfrom statsmodels.graphics.tsaplots import plot_acf#tslearnfrom tslearn.barycenters import dtw_barycenter_averaging# tssearchfrom tssearch import get_distance_dict, time_series_segmentation, time_series_search, plot_search_distance_result# tsfreshfrom tsfresh import extract_featuresfrom tsfresh.feature_selection.relevance import calculate_relevance_tablefrom tsfresh.feature_extraction import EfficientFCParametersfrom tsfresh.utilities.dataframe_functions import impute

技术交流与源码获取

技术要学会交流、分享,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

好的文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

技术交流、代码、数据获取方式如下

方式①、添加微信号:dkl88194,备注:来自CSDN + 技术交流
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:技术交流

资料1
在这里插入图片描述
资料2

我们打造了《100个超强算法模型》,特点:从0到1轻松学习,原理、代码、案例应有尽有,所有的算法模型都是按照这样的节奏进行表述,所以是一套完完整整的案例库。

很多初学者是有这么一个痛点,就是案例,案例的完整性直接影响同学的兴致。因此,我整理了 100个最常见的算法模型,在你的学习路上助推一把!

在这里插入图片描述

1、Statsmodels

从statmodels库中,两个基本函数在理解从x, y和z方向收集的加速度数据的特征方面起着关键作用。

adfuller函数是确定时间序列信号平稳性的有力工具。通过对我们的数据进行Augmented Dickey-Fuller检验,可以确定加速度信号是否表现出平稳的行为,这是许多时间序列分析技术的基本要求。这个测试帮助我们评估数据是否随时间而变化。

 def activity_stationary_test(dataframe, sensor, activity):dataframe.reset_index(drop=True)adft = adfuller(dataframe[(dataframe['Activity'] == activity)][sensor], autolag='AIC')output_df = pd.DataFrame({'Values':[adft[0], adft[1], adft[4]['1%']], 'Metric':['Test Statistics', 'p-value', 'critical value (1%)']})print('Statistics of {} sensor:\n'.format(sensor), output_df)print()if (adft[1] < 0.05) & (adft[0] < adft[4]['1%']):print('The signal is stationary')else:print('The signal is non-stationary')

seasonal_decomposition函数提供了对时间序列数据结构的宝贵见解。它将时间序列分解为三个不同的组成部分:趋势、季节性和残差。这种分解使我们能够可视化和理解加速度数据中的潜在模式和异常。

  def activity_decomposition(dataframe, sensor, activity):dataframe.reset_index(drop=True)data = dataframe[(dataframe['Activity'] == activity)][sensor]decompose = seasonal_decompose(data, model='additive', extrapolate_trend='freq', period=50)fig = decompose.plot()fig.set_size_inches((12, 7))fig.axes[0].set_title('Seasonal Decomposition Plot')fig.axes[3].set_xlabel('Indices')plt.show()

在这里插入图片描述

2、Tslearn

如果使用tslearn库进行时间序列分析。可以采用分割方法,将连续的加速信号分解成特定长度的离散段或窗口(例如,150个数据点)。这些片段提供了行走过程中运动的颗粒视图,并成为进一步分析的基础。重要的是,我们在相邻部分之间使用了50个数据点的重叠,从而可以更全面地覆盖潜在的动态。

 template_length = 150overlap = 50 # Adjust the overlap value as neededsegments = [signal[i:i + template_length] for i in range(0, len(signal) - template_length + 1, overlap)]

在这里插入图片描述

为了从这些片段中获得一个封装行走典型特征的代表性模板,我们使用了dtw_barycenter_averaging函数。该方法采用动态时间规整(Dynamic Time Warping, DTW)对分割的时间序列进行对齐和平均,有效地创建了一个捕捉步行运动中心趋势的模板。

  template_signal = dtw_barycenter_averaging(segments)template_signal = template_signal.flatten()

生成的模板为后续的分类和比较任务提供了有价值的参考,有助于基于x轴加速度的步行活动识别和分析。

在这里插入图片描述

3、Tssearch

对于tssearch库使用time_series_segmentation函数,通过动态时间规整(DTW)或其他相似性度量来识别输入时间序列中与所提供的模板信号最相似的片段。

该函数的主要目标是定位和提取与模板信号密切匹配的输入时间序列片段。通过将模板信号与输入时间序列进行比较,可以找到这些片段,该函数返回输入时间序列中这些片段开始的位置或索引。

segment_distance = get_distance_dict(["Dynamic Time Warping"])segment_results = time_series_segmentation(segment_distance, template_signal, signal_np)for k in segment_results:plt.figure(figsize=(15, 3))plt.plot(signal_np, color='gray')plt.vlines(segment_results[k], np.min(signal_np)-1, np.max(signal_np) + 1, 'C1')plt.xlabel('Indices')plt.ylabel('Amplitude')plt.title(k)

tssearch库中还有另一个用于发现时间序列数据中的相似性和差异性的方法。首先,我们配置了一个字典dict_distances来指定搜索的距离度量。定义了两种不同的方法。第一个,标记为“elastic”,采用动态时间规整(DTW)作为相似性度量。使用特定的参数定制DTW,例如dtw_type设置为“sub-dtw”,alpha设置为0.5,允许灵活的时间序列对齐和比较。然后是“lockstep”,它利用欧几里得距离以一种更严格的方式来衡量相似性。有了这些距离配置,就可以使用time_series_search函数执行时间序列搜索,将模板信号与目标信号(signal_np)进行比较,并指定前30个匹配项的输出。

dict_distances = {"elastic": {"Dynamic Time Warping": {"function": "dtw","parameters": {"dtw_type": "sub-dtw", "alpha": 0.5},}},"lockstep": {"Euclidean Distance": {"function": "euclidean_distance","parameters": "",}}}result = time_series_search(dict_distances, template_signal, signal_np, output=("number", 30))plot_search_distance_result(result, signal_np)

在这里插入图片描述

在这里插入图片描述

这是一种时间序列聚类的简单的方法,并且可解释性很强。

4、Tsfresh

tsfresh库则是一个很好的自动化特征提取过程的工具。effentfcparameters()定义了一组提取设置,它指定了特征提取参数和配置。这些设置可以控制在提取过程中计算哪些特征。然后就可以使用extract_features函数应用进行特征的提取。这里应该将“Activity”列作为标识符列,并提供了特征提取参数。重要的是,该库可以对缺失值(NaN)的特征进行自动删除,结果保存在x_extract中,是从时间序列数据中提取的大量特征集合。Tsfresh简化了通常复杂且耗时的特征工程过程,为时间序列分析提供了宝贵的资源。

 extraction_settings = EfficientFCParameters()X_extracted = extract_features(final_df, column_id='Activity',default_fc_parameters=extraction_settings,# we impute = remove all NaN features automaticallyimpute_function=impute, show_warnings=False)X_extracted= pd.DataFrame(X_extracted, index=X_extracted.index, columns=X_extracted.columns)values = list(range(1, 13))y = pd.Series(values, index=range(1, 13))relevance_table_clf = calculate_relevance_table(X_extracted, y)relevance_table_clf.sort_values("p_value", inplace=True)relevance_table_clf.head(10)

在这里插入图片描述

 top_features = relevance_table_clf["feature"].head(10)x_features = X_extracted[top_features]

在这里插入图片描述

总结

本文向您介绍了时间序列分析的四个基本Python库:statmodels、tslearn、tssearch和tsfresh。时间序列分析是金融和医疗保健等各个领域的重要工具,在这些领域,我们需要了解数据随时间的变化趋势,以便做出明智的决策和预测。

每个库都专注于时间序列分析的不同方面,选择哪个库取决于具体问题。通过结合使用这些库,可以处理各种与时间相关的挑战,从预测财务趋势到对医疗保健中的活动进行分类。当要开始自己的时间序列分析项目时,请记住这些库,结合着使用它们可以帮助你解决很多的实际问题。

kaggle数据集:https://www.kaggle.com/datasets/gaurav2022/mobile-health/discussion/375938

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/214780.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识人工智能,一文读懂贝叶斯优化的知识文集(6)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

IDEA中配置Git

Git 在IDEA中使用Git1 在IDEA中配置Git2 在IDEA中使用Git2.1在IDEA中创建工程并将工程添加至Git2.2 将文件添加到暂存区2.3 提交文件2.4 将代码推送到远程仓库2.5 从远程仓库克隆工程到本地2.6 从远程拉取代码2.7 版本对比2.8 创建分支2.9 切换分支2.10 分支合并 3 使用IDEA进行…

【HarmonyOS开发】详解常见容器的使用

声明式UI提供了以下8种常见布局&#xff0c;开发者可根据实际应用场景选择合适的布局进行页面开发。 布局 应用场景 线性布局&#xff08;Row、Column&#xff09; 如果布局内子元素超过1个&#xff0c;且能够以某种方式线性排列时优先考虑此布局。 层叠布局&#xff08;St…

Windows系统Java开发环境安装

总结一下Java软件开发工程师常见的环境的安装&#xff0c;仅限Windows环境。 以下下载链接均来自官网&#xff0c;网络条件自己克服。 目录 1. JDKJDK Oracle 官网下载地址配置系统环境变量 2. Mavenapache maven 官网地址本地仓库和中央仓库配置配置系统环境变量 3. GitGit 官…

Mybatis之核心配置文件详解、默认类型别名、Mybatis获取参数值的两种方式

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

Xilinx FPGA——ISE时序约束“建立时间不满足”问题解决记录

一、现象 最近使用赛灵思的FPGA设计项目时&#xff0c;出现时序约束失效问题。 点进去发现如下&#xff1a; 一个始终约束没有生效&#xff0c;有多处报错。 二、原因 出现这个问题的原因是&#xff0c;建立时间不满足。 时序违例的主要原因是建立时间和保持时间不满足要求&a…

【JAVA】黑马MybatisPlus 学习笔记【一】

1.快速入门 为了方便测试&#xff0c;我们先创建一个新的项目&#xff0c;并准备一些基础数据。 1.1 环境配置 导入项目 注意配置一下项目的JDK版本为JDK11。首先点击项目结构设置&#xff1a; 导入两张表&#xff0c;在课前资料中已经提供了SQL文件&#xff1a; 最后&am…

2023五岳杯量子计算挑战赛数学建模思路+代码+模型+论文

目录 计算力网络&#xff08;CPN&#xff09;是一种新型的信息基础设施&#xff0c;完整论文代码见文末 问题描述 2.1 问题1 2.2 问题2 2.3 问题3 问题1的解答过程&#xff1a; 问题3的解答过程&#xff1a; 决策优化应用场景&#xff1a;人工智能模型超参数调优 背景信…

【链表Linked List】力扣-117 填充每个节点的下一个右侧节点指针II

目录 问题描述 解题过程 官方题解 问题描述 给定一个二叉树&#xff1a; struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针&#xff0c;让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点&#xff0c;则将 next 指针设置为 N…

VR远程带看,助力线下门店线上化转型“自救”

VR远程带看&#xff0c;因自身高效的沉浸式在线沟通功能&#xff0c;逐渐走进了大众的视野。身临其境的线上漫游体验以及实时同屏互联的新型交互模式&#xff0c;提升了商家同用户之间的沟通效率&#xff0c;进一步实现了远程线上一对一、一对多的同屏带看&#xff0c;用户足不…

【Lidar】基于Python的三维点云数据转二维平面+散点图绘制

最近一直在搞点云相关的操作&#xff0c;有时候在处理点云数据时需要查看处理后的数据是否满足需求&#xff0c;所以就想着写一套展示点云的代码。之前已经分享过如何可视化点云了&#xff0c;感兴趣的可以自己去看下&#xff1a;【Lidar】基于Python的Open3D库可视化点云数据。…

Apache Hive(部署+SQL+FineBI构建展示)

Hive架构 Hive部署 VMware虚拟机部署 一、在node1节点安装mysql数据库 二、配置Hadoop 三、下载 解压Hive 四、提供mysql Driver驱动 五、配置Hive 六、初始化元数据库 七、启动Hive(Hadoop用户) chown -R hadoop:hadoop apache-hive-3.1.3-bin hive 阿里云部…

vue3封装接口

在src下面创建一个文件夹任意名称 我拿这个名字举例子了apiService 相当于创建一个新的文件 // 封装接口 // apiService.js import axios from axios;// 接口前缀 const API_BASE_URL 前缀;接口后缀export const registerUser async (fileData) > {try {const response …

【文件上传系列】No.2 秒传(原生前端 + Node 后端)

上一篇文章 【文件上传系列】No.1 大文件分片、进度图展示&#xff08;原生前端 Node 后端 & Koa&#xff09; 秒传效果展示 秒传思路 整理的思路是&#xff1a;根据文件的二进制内容生成 Hash 值&#xff0c;然后去服务器里找&#xff0c;如果找到了&#xff0c;说明已经…

redis集群(cluster)笔记

1. 定义&#xff1a; 由于数据量过大&#xff0c;单个Master复制集难以承担&#xff0c;因此需要对多个复制集进行集群&#xff0c;形成水平扩展每个复制集只负责存储整个数据集的一部分&#xff0c;这就是Redis的集群&#xff0c;其作用是提供在多个Redis节点间共享数据的程序…

【数据结构】栈和队列超详解!(Stack Queue)

文章目录 前言一、栈1、栈的基本概念2、栈的实现&#xff08;数组实现&#xff09;3、栈的基本操作3.1 栈的结构设计3.2 栈常见的基本函数接口 4、栈的实现4.1 初始化栈4.2 栈的销毁4.3 入栈4.4 出栈4.5 判空4.6 长度4.7 获取栈顶元素 完整代码Stack.hStack.cTest.c 二、队列1、…

【JavaWeb学习专栏 | CSS篇】css简单介绍 css常用选择器集锦

个人主页&#xff1a;[兜里有颗棉花糖(https://xiaofeizhu.blog.csdn.net/) 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【JavaWeb学习专栏】【Java系列】 希望本文内容可以帮助到大家&#xff0c;一起加油吧&#xff01;…

Ubuntu安装向日葵【远程控制】

文章目录 引言下载向日葵安装向日葵运行向日葵卸载向日葵参考资料 引言 向日葵是一款非常好用的远程控制软件。这一篇博文介绍了如何在 Ubuntu Linux系统 中安装贝瑞向日葵。&#x1f3c3;&#x1f4a5;&#x1f4a5;&#x1f4a5;❗️ 下载向日葵 向日葵官网: https://sunl…