【算法优选】 动态规划之路径问题——贰

文章目录

  • 🎋前言
  • 🌲[下降最小路径和](https://leetcode.cn/problems/minimum-path-sum/)
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • 🎍[最小路径和](https://leetcode.cn/problems/minimum-path-sum/)
    • 🚩算法思路
    • 🚩代码实现
  • 🌴[地下城游戏](https://leetcode.cn/problems/dungeon-game/)
    • 🚩题目描述
    • 🚩算法思路
    • 🚩代码实现
  • ⭕总结

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表⽰

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🌲下降最小路径和

🚩题目描述

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

  • 示例 1:

在这里插入图片描述
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

  • 示例 2:

在这里插入图片描述
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

class Solution {public int minFallingPathSum(int[][] matrix) {}
}

🚩算法思路:

关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。
⽐较难的地⽅可能就是对于「边界条件」的处理。

  1. 状态表⽰:
    对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
    • 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式

这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。

  1. 状态转移⽅程:
    对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
    • 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
    • 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
    • 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;

我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +1])) + matrix[i][j] 。

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为0 即可。

  1. 填表顺序:
    根据「状态表⽰」,填表的顺序是「从上往下」。

  2. 返回值:
    注意这⾥不是返回 dp[m][n] 的值!

题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「dp表中最后⼀⾏的最⼩值」。

🚩代码实现

class Solution {public int minFallingPathSum(int[][] matrix) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回结果int n = matrix.length;int[][] dp = new int[n + 1][n + 2];for(int i = 1; i <= n; i++) {dp[i][0] = dp[i][n + 1] = Integer.MAX_VALUE;}for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++) {dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i - 1][j - 1],dp[i - 1][j + 1])) + matrix[i - 1][j - 1];}}int ret = Integer.MAX_VALUE;for(int j = 1; j <= n; j++) {ret = Math.min(ret, dp[n][j]);}return ret;}
}

🎍最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

  • 示例 1:
    在这里插入图片描述
    输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
    输出:7
    解释:因为路径 1→3→1→1→1 的总和最小。

  • 示例 2:
    输入:grid = [[1,2,3],[4,5,6]]
    输出:12

class Solution {public int minPathSum(int[][] grid) {}
}

🚩算法思路

像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到「不同路径」⼀类的题⾥⾯。

  1. 状态表⽰:
    对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,一系列操作;
    • 从起始位置出发,到达 [i, j] 位置,一系列操作。

这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。

  1. 状态转移:
    简单分析⼀下。如果 dp[i][j] 表⽰到达到达 [i, j] 位置处的最⼩路径和,那么到达[i, j] 位置之前的⼀⼩步,有两种情况:
    • 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
    • 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。

由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。

  2. 返回值:
    根据「状态表⽰」,我们要返回的结果是 dp[m][n]

🚩代码实现

class Solution {public int minPathSum(int[][] grid) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int m = grid.length;int n = grid[0].length;int[][] dp = new int[m + 1][n + 1];for(int j = 0; j <= n; j++)  {dp[0][j] = Integer.MAX_VALUE;}for(int i = 0; i <= m; i++) {dp[i][0] = Integer.MAX_VALUE;}dp[0][1] = dp[1][0] = 0;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++) {dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j-1];}}return dp[m][n];}
}

🌴地下城游戏

🚩题目描述

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

  • 示例 1:
    在这里插入图片描述
    输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
    输出:7
    解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

  • 示例 2:
    输入:dungeon = [[0]]
    输出:1

class Solution {public int calculateMinimumHP(int[][] dungeon) {}
}

🚩算法思路

  1. 状态表⽰:

这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。

这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。

综上所述,定义状态表⽰为:
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

  1. 状态转移⽅程:
    对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[i] [j] 的最终答案是 x ):
    • ⾛到右边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
    • ⾛到下边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;

综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:dp[i][j] = max(1, dp[i][j])

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。

  2. 返回值:
    根据「状态表⽰」,我们需要返回 dp[0][0] 的值

🚩代码实现

class Solution {public int calculateMinimumHP(int[][] d) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int m = d.length;int n = d[0].length;int[][] dp = new int[m + 1][n + 1];for(int j = 0; j <= n; j++) {dp[m][j] = Integer.MAX_VALUE;}for(int i = 0; i <= m; i++) {dp[i][n] = Integer.MAX_VALUE;}dp[m][n - 1] = dp[m - 1][n] = 1;for(int i = m - 1; i >= 0; i--) {for(int j = n - 1; j >= 0; j--) {dp[i][j] = Math.min(dp[i][j + 1], dp[i + 1][j]) - d[i][j];dp[i][j] = Math.max(dp[i][j], 1);}}return dp[0][0];}
}

⭕总结

关于《【算法优选】 动态规划之路径问题——贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215227.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

搜集怎么绘制三维曲线和曲面?

1、针对函数对象是单一变量、两个函数的情况。用plot3函数&#xff1b;&#xff08;三维曲线&#xff09; 看一下matlab官方的例子&#xff1a; t 0:pi/50:10*pi; st sin(t); ct cos(t); plot3(st,ct,t) 绘制出来的曲线&#xff1a; 几个比较关键的点&#xff1a; &…

基于SpringBoot+Vue前后端分离的景点数据分析平台(Java毕业设计)

大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的方法。无论你是…

Spring Boot 3 整合 Spring Cache 与 Redis 缓存实战

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

ISP去噪(1)

#灵感# 因为理解的2DNR、3DNR 和当前调试平台标注的2DNR、3DNR 作用有很大差异&#xff0c;所以在网上广撒网&#xff0c;搜集知识。 目前收集出来一个这样的文章&#xff0c;有点像大学生的论文“取其精华&#xff0c;合成糟粕”。------权当一个记录册 目录 运动阈值&…

学习mysql记录

环境: macbookpro m1 1. 安装mysql 使用苹果自带的包管理工具brew进行安装 1. brew install mysql (安装) 2. brew services start mysql (启动mysql服务) 1.1 如果提示zsh: mysql command not found, 终端执行以下命令 1. cd ~ (切到根目录) 2. vi .bash_profile (进入编辑…

【7】PyQt布局layout

目录 1. 布局简介 2. 水平布局QHBoxLayout 3. 竖直布局QVBoxLayout 4. 表单布局QFormLayout 5. 布局嵌套 1. 布局简介 一个pyqt窗口中可以有多个控件。所谓布局,指的就是多个控件在窗口中的展示方式 布局方式大致分为: 水平布局竖直布局网格布局表单布局 2. 水平布局Q…

人工智能|网络爬虫——用Python爬取电影数据并可视化分析

一、获取数据 1.技术工具 IDE编辑器&#xff1a;vscode 发送请求&#xff1a;requests 解析工具&#xff1a;xpath def Get_Detail(Details_Url):Detail_Url Base_Url Details_UrlOne_Detail requests.get(urlDetail_Url, headersHeaders)One_Detail_Html One_Detail.cont…

【conda】利用Conda创建虚拟环境,Pytorch各版本安装教程(Ubuntu)

TOC conda 系列&#xff1a; 1. conda指令教程 2. 利用Conda创建虚拟环境&#xff0c;安装Pytorch各版本教程(Ubuntu) 1. 利用Conda创建虚拟环境 nolonolo:~/sun/SplaTAM$ conda create -n splatam python3.10查看结果&#xff1a; (splatam) nolonolo:~/sun/SplaTAM$ cond…

Q_GDW1819-2013电压监测装置协议结构解析

目录 一 专业术语二 基本功能2.1 基础功能2.2 数据存储2.3 显示功能&#xff08;设备能够看到的&#xff09;2.4 参数设置与查询2.5 事件检测与告警功能 三 其他内容3.1 通信方式3.2 通信串口 四 帧结构解析4.1 传输方式4.2 数据帧格式4.2.1 报文头&#xff08;2字节&#xff0…

数字人对话系统 Linly-Talker

&#x1f525;&#x1f525;&#x1f525;数字人对话系统 Linly-Talker&#x1f525;&#x1f525;&#x1f525; English 简体中文 欢迎大家star我的仓库 https://github.com/Kedreamix/Linly-Talker 2023.12 更新 &#x1f4c6; 用户可以上传任意图片进行对话 介绍 Lin…

李宏毅bert记录

一、自监督学习&#xff08;Self-supervised Learning&#xff09; 在监督学习中&#xff0c;模型的输入为x&#xff0c;若期望输出是y&#xff0c;则在训练的时候需要给模型的期望输出y以判断其误差——有输入和输出标签才能训练监督学习的模型。 自监督学习在没有标注的训练…

spark无法执行pi_如何验证spark搭建完毕

在配置yarn环境下的spark时&#xff0c;执行尚硅谷的以下命令发现报错&#xff0c;找不到这个也找不到那个&#xff0c;尚硅谷的代码是 bin/spark-submit \ --class org.apache.spark.examples.SparkPi \ --master yarn \ --deploy-mode cluster \ ./examples/jars/spark-exam…

市场全局复盘 20231211

昨日回顾&#xff1a; SELECT TOP 10000 CODE,成交额排名,净流入排名,代码,名称,DDE大单金额,涨幅,所属行业,主力净额,DDE大单净量,CONVERT(DATETIME, 最后涨停时间, 120) AS 最后涨停时间 FROM dbo.全部&#xff21;股20231208_ALL WHERE 连板天 > 1AND DDE大单净量 > …

软件开发流程分析

软件开发流程分析 相关概念1 原型设计2 产品设计3 交互设计4 代码实现详细步骤 相关概念 前端&#xff1a;自研API&#xff0c;调用第三放API 后端&#xff1a;自研API&#xff0c;第三方API 数据库&#xff1a;Mysql&#xff0c;数据采集&#xff0c;数据迁移 服务器&#xf…

CefSharp 获取POST(AJAX)、GET消息返回值(request)

CefSharp作为专门为爬虫工具开发的库比Selenium这种开发目的是页面测试工具然后用来做爬虫的工具要贴心得多。我们操作网页的时候发送或者做了某个动作提交表单之后需要知道我们的动作或者提交是否成功&#xff0c;因为有的页面会因为网络延迟问题提交失败&#xff0c;需要准确…

十五、机器学习进阶知识:K-Means聚类算法

文章目录 1、聚类概述2、K-Means聚类算法原理3、K-Means聚类实现3.1 基于SKlearn实现K-Means聚类3.2 自编写方式实现K-Means聚类 4、算法不足与解决思路4.1 存在的问题4.2 常见K值确定方法4.3 算法评估优化思路 1、聚类概述 聚类&#xff08;Clustering&#xff09;是指将不同…

正则表达式详细讲解

目录 一、正则表达式概念 二、八元素 1、普通字符&#xff1a; 2、元字符&#xff1a; 3、通配符 .&#xff1a; 4、字符类 []&#xff1a; 5、量词&#xff1a; 6、锚点 ^ 和 $&#xff1a; 7、捕获组 ()&#xff1a; 8、转义字符 \&#xff1a; 三、日常使用的正则…

股市复苏中的明懿金汇:抓住新机遇

2023年对于明懿金汇来说是充满挑战与机遇的一年。面对复杂多变的市场环境&#xff0c;明懿金汇展现了其对市场趋势的敏锐洞察和卓越的策略适应能力。以下是该公司在2023年的主要投资策略和市场适应方式的详细分析。 随着2023年中国股市迎来反弹&#xff0c;明懿金汇迅速调整了…

Linux网络——高级IO

目录 一.五种IO模型 1.阻塞式IO 2.非阻塞式IO 3.信号驱动IO 4.多路转接IO&#xff1a; 5.异步IO 二.同步通信 vs 异步通信 三.设置非阻塞IO 1.阻塞 vs 非阻塞 2.非阻塞IO 3.实现函数SetNoBlock 四.I/O多路转接之select 1.初识select 2.select函数原型 3.socket就绪…

国内大厂机器人赛道产品

大疆 大疆无人机自然不必说&#xff0c;除此之外大疆搞机甲大师&#xff0c;教育机器人。 字节 当前字节在机器人领域只是初步探索阶段&#xff0c;目前尚未发布相关产品&#xff08;截止至23.12&#xff09;。 管理层想法&#xff1a; 跟已有业务做结合&#xff0c;服务好…