Pytorch-LSTM轴承故障一维信号分类(一)

目录

前言

1 数据集制作与加载

1.1 导入数据

第一步,导入十分类数据

第二步,读取MAT文件驱动端数据

第三步,制作数据集

第四步,制作训练集和标签

1.2 数据加载,训练数据、测试数据分组,数据分batch

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

2.2 定义模型参数

2.3 模型结构

3 LSTM模型训练与评估

3.1 模型训练

3.2 模型评估


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT

Python轴承故障诊断 (三)经验模态分解EMD

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Python实现LSTM模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

1 数据集制作与加载

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

第一步,导入十分类数据

import numpy as np
import pandas as pd
from scipy.io import loadmatfile_names = ['0_0.mat','7_1.mat','7_2.mat','7_3.mat','14_1.mat','14_2.mat','14_3.mat','21_1.mat','21_2.mat','21_3.mat']for file in file_names:# 读取MAT文件data = loadmat(f'matfiles\\{file}')print(list(data.keys()))

第二步,读取MAT文件驱动端数据

# 采用驱动端数据
data_columns = ['X097_DE_time', 'X105_DE_time', 'X118_DE_time', 'X130_DE_time', 'X169_DE_time','X185_DE_time','X197_DE_time','X209_DE_time','X222_DE_time','X234_DE_time']
columns_name = ['de_normal','de_7_inner','de_7_ball','de_7_outer','de_14_inner','de_14_ball','de_14_outer','de_21_inner','de_21_ball','de_21_outer']
data_12k_10c = pd.DataFrame()
for index in range(10):# 读取MAT文件data = loadmat(f'matfiles\\{file_names[index]}')dataList = data[data_columns[index]].reshape(-1)data_12k_10c[columns_name[index]] = dataList[:119808]  # 121048  min: 121265
print(data_12k_10c.shape)
data_12k_10c

第三步,制作数据集

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

第四步,制作训练集和标签

# 制作数据集和标签
import torch# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。def make_data_labels(dataframe):'''参数 dataframe: 数据框返回 x_data: 数据集     torch.tensory_label: 对应标签值  torch.tensor'''# 信号值x_data = dataframe.iloc[:,0:-1]# 标签值y_label = dataframe.iloc[:,-1]x_data = torch.tensor(x_data.values).float()y_label = torch.tensor(y_label.values.astype('int64')) # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签return x_data, y_label# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

1.2 数据加载,训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载数据集
def dataloader(batch_size, workers=2):# 训练集train_xdata = load('trainX_1024_10c')train_ylabel = load('trainY_1024_10c')# 验证集val_xdata = load('valX_1024_10c')val_ylabel = load('valY_1024_10c')# 测试集test_xdata = load('testX_1024_10c')test_ylabel = load('testY_1024_10c')# 加载数据train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)return train_loader, val_loader, test_loaderbatch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

注意:输入数据进行了堆叠 ,把一个1*1024 的序列 进行划分堆叠成形状为 32 * 32, 就使输入序列的长度降下来了

2.2 定义模型参数

# 定义模型参数
batch_size = 32
input_dim = 32   # 输入维度为一维信号序列堆叠为 32 * 32
hidden_layer_sizes = [256, 128, 64]
output_dim = 10model = LSTMclassifier(batch_size, input_dim, hidden_layer_sizes, output_dim)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

2.3 模型结构

3 LSTM模型训练与评估

3.1 模型训练

训练结果

200个epoch,准确率将近96%,LSTM网络分类模型效果良好,继续调参还可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 LSTM层数 和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.2 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载模型
# model =torch.load('best_model_lstm.pt')
model = torch.load('best_model_lstm.pt', map_location=torch.device('cpu'))# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():correct_test = 0test_loss = 0for test_data, test_label in test_loader:test_data, test_label = test_data.to(device), test_label.to(device)test_output = model(test_data)probabilities = F.softmax(test_output, dim=1)predicted_labels = torch.argmax(probabilities, dim=1)correct_test += (predicted_labels == test_label).sum().item()loss = loss_function(test_output, test_label)test_loss += loss.item()test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')Test Accuracy: 0.9570  Test Loss: 0.12100271

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215258.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubeadm 方式部署K8s集群

环境 主节点CPU核数必须是 ≥2核且内存要求必须≥2G,否则k8s无法启动 主机名地址角色配置kube-master192.168.134.165主节点2核4Gkube-node1192..168.134.166 工作节点2核4Gkube-node2192.168.134.163工作节点2核4G 1.获取镜像 谷歌镜像[由于国内网络原因…

简单的 u-popup 弹出框

uniapp中的popup组件可以用于弹出简单的提示框、操作框、菜单等。它可以通过position属性控制弹出框的位置,不同的position值会使得弹出框呈现不同的弹出形式 目录 一、实现思路 二、实现步骤 ①view部分展示 ②JavaScript 内容 ③css中样式展示 三、效果展示 …

DevEco Studio 3.1IDE环境配置(HarmonyOS 3.1)

DevEco Studio 3.1IDE环境配置(HarmonyOS 3.1) 一、安装环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、环境安装 IDE下载地址:HUAWEI DevEco Studio和SDK下载和升级 | HarmonyOS开发者 IDE的安装就是…

hive-窗口函数

1 窗口函数语法 分析函数/专用窗口函数 over(partition by 列名 order by 列名 rows between 开始位置 and 结束位置) 常用的分析函数 常用的分析函数:sum()、max()、min()、avg()、count() 常用的专用窗口函数 专用窗口函数:row_number()、rank()、dens…

【Qt】Qt获取操作系统和网络信息示例

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍Qt获取操作系统和网络信息示例。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下次更…

没有明确的报错信息,阿里云国际版Windows服务器无法远程连接

在远程连接失败时,如果您没有收到系统返回的报错信息,并且ECS实例是运行中的状态,然后再根据以下步骤进行排查: 步骤一:使用阿里云Workbench工具测试远程登录 步骤二:检查是否有收到黑洞通知 步骤三&…

Hbase2.5.5分布式部署安装记录

文章目录 1 环境准备1.1 节点部署情况1.2 安装说明 2 Hbase安装过程Step1:Step2:Step3:Step4: 3 Web UI检查状态并测试3.1 Web UI3.2 创建测试命名空间 1 环境准备 1.1 节点部署情况 Hadoop11:Hadoop3.1.4 、 zookeeper3.4.6、jdk8 Hadoop1…

Unity之OpenXR+XR Interaction Toolkit接入微软VR设备Windows Mixed Reality

前言 Windows Mixed Reality 是 Microsoft 用于增强和虚拟现实体验的VR设备,如下图所示: 在国内,它的使用率很低,一把都是国外使用,所以适配起来是相当费劲。 这台VR设备只能用于串流Windows,启动后,会自动连接Window的Mixed Reality程序,然后打开微软的增强现实门户…

云原生的 CI/CD 框架tekton - Trigger(二)

上一篇为大家详细介绍了tekton - pipeline,由于里面涉及到的概念比较多,因此需要好好消化下。同样,今天在特别为大家分享下tekton - Trigger以及案例演示,希望可以给大家提供一种思路哈。 文章目录 1. Tekton Trigger2. 工作流程3…

在线学习平台-课程分页、用户管理、教师查询

在线学习平台------手把手教程👈 用户管理 添加功能增强 新增属性 若依里的用户模块(SysUser)是没有课程这一属性的,要实现我们自己的课程分页查询功能 这个位置传入的实体类SysUser要加上classId,记得加上get、set方法 更改sql语句 ctrl 鼠标左键不断点进去…

C++联合体union

联合体 将多个类型合并到一起省空间 枚举与联合一起使用 匿名联合 类似于无作用域 C11联合体定义非内建类型 C11 引入了能够在联合体中使用非内建类型的能力,这些类型包括具有自定义构造函数、析构函数、拷贝构造函数和拷贝赋值运算符的类。 关键特性…

如何将用户有过行为的item用list形式记录下来,另外如何计算list里的个数

导语: 最近做项目,发现有些语法想一想是知道,但实际操作起来跟想的情况不一样哈哈。不是遇见bug就是输出的结果不是自己想要的,CSDN跟知乎找了很多没怎么解决,后面多摸索多实操终于解决! test_data[item_…

JAVA实操经验

零: 按照需要,可以使用需要某个类下(主要是java提供的)的方法来实现某个功能。(主要是用在不同类下的方法会进行重写功能不同) 方法和构造方法不同:方法是方法,构造方法是构造器&a…

开箱即用的C++决策树简单实现

一个数据结构期末作业(有兴趣用的话可以高抬贵手star下⭐~)GitHub - mcxiaoxiao/c-Decision-tree: 决策树c简单实现 🌳 c-Decision-tree 附大作业/课设参考文档.doc 🌳 c-Decision-tree Introduction 🙌 c-Decision…

【S32DS RTD实战】-1.3-S32K3工程生成S19,BIN,Hex文件,以及Post-build steps的妙用

目录 1 方法一:逐个生成Motorola S-record(s19,srec…),Intel HEX,Bin文件 1.1 生成Motorola S-record(s19,srec…)文件 1.2 生成Intel HEX文件 1.3 生成Bin文件 2 …

redis(设置密码)配置文件详细

1.设置账号密码端口 config set requirepass 123456 设置密码为123456 config get requirepass 查看账号密码 auth 123456 登入的时候输入这个确定账号密码 1. 首先连接到Redis服务器: redis-cli 2. 然后使用CONFIG SET命令设置requirepass参数并指定密码: CONFIG SET requi…

Android Audio实战——音频链路分析(二十五)

在 Android 系统的开发过程当中,音频异常问题通常有如下几类:无声、调节不了声音、爆音、声音卡顿和声音效果异常(忽大忽小,低音缺失等)等。尤其声音效果这部分问题通常从日志上信息量较少,相对难定位根因。想要分析此类问题,便需要对声音传输链路有一定的了解,能够在链…

SpringData JPA 搭建 xml的 配置方式

1.导入版本管理依赖 到父项目里 <dependencyManagement><dependencies><dependency><groupId>org.springframework.data</groupId><artifactId>spring-data-bom</artifactId><version>2021.1.10</version><scope>…

uniapp实战 —— 弹出层 uni-popup (含vue3子组件调父组件的方法)

效果预览 弹出的内容 src\pages\goods\components\ServicePanel.vue <script setup lang"ts"> // 子组件调父组件的方法 const emit defineEmits<{(event: close): void }>() </script><template><view class"service-panel"…

XCube——用于超高分辨率 3D 形状和场景的生成模型!

他们的方法在稀疏体素网格的层次结构上训练潜在扩散模型的层次结构。他们在稀疏结构 VAE 的潜在空间上进行扩散&#xff0c;它为层次结构的每个级别学习紧凑的潜在表示。 XCube 是稀疏体素层次上的分层潜在扩散模型&#xff0c;即从粗到细的 3D 稀疏体素网格序列&#xff0c;使…