大数据机器学习与深度学习——过拟合、欠拟合及机器学习算法分类

大数据机器学习与深度学习——过拟合、欠拟合及机器学习算法分类

过拟合,欠拟合

针对模型的拟合,这里引入两个概念:过拟合,欠拟合。

过拟合:在机器学习任务中,我们通常将数据集分为两部分:训练集和测试集。训练集用于训练模型,而测试集则用于评估模型在未见过数据上的性能。过拟合就是指模型在训练集上表现较好,但在测试集上表现较差的现象。

当模型过度拟合训练集时,它会学习到训练数据中的噪声和异常模式,导致对新数据的泛化能力下降。过拟合的典型特征是模型对训练集中每个样本都产生了很高的拟合度,即模型过于复杂地学习了训练集的细节和噪声。

欠拟合:在训练集上的效果就很差。

对于二分类数据,我们可以用下面三个图更直观的理解过拟合与欠拟合

一、欠拟合
首先来说欠拟合,欠拟合主要是由于学习不足造成的,那么我们可以通过以下方法解决此问题

1、增加特征
增加新的特征,或者衍生特征(对特征进行变换,特征组合)

2、使用较复杂的模型,或者减少正则项
其次讨论过拟合,为什么我们的模型会过拟合呢?这里,我总结了一下,将其原因分成两大类:

二、过拟合
1、样本问题
1)样本量太少:
样本量太少可能会使得我们选取的样本不具有代表性,从而将这些样本独有的性质当作一般性质来建模,就会导致模型在测试集上效果很差;

模型复杂度过高:当模型的复杂度过高时,它有足够的灵活性来捕捉训练集中的每个数据点,但也容易记住数据中的噪声和特定样本的细节,导致在新数据上的性能下降。

数据不足:如果训练集样本数量较少,模型难以捕捉到数据的整体分布,容易受到极端值的影响,从而导致过拟合问题。

特征选择不当:选择的特征过多或过少都可能导致过拟合。特征选择的关键是要选择那些与预测目标相关的特征,过多或过少都可能引入噪声或忽略重要信息。

2)训练集、测试集分布不一致:

对于数据集的划分没有考虑业务场景,有可能造成我们的训练、测试样本的分布不同,就会出现在训练集上效果好,在测试集上效果差的现象;

3)样本噪声干扰大:
如果数据的声音较大,就会导致模型拟合这些噪声,增加了模型复杂度;

2、模型问题
1)参数太多,模型过于复杂,对于树模型来说,比如:决策树深度较大等。

3、解决方法

1)增加样本量:

样本量越大,过拟合的概率就越小(不过有的由于业务受限,样本量增加难以实现);

2)减少特征:

减少冗余特征;

3)加入正则项:

损失函数中加入正则项,惩罚模型的参数,降低模型的复杂度(树模型可以控制深度等);

4)集成学习:

详细一点:
练多个模型,将模型的平均结果作为输出,这样可以弱化每个模型的异常数据影响。
增加训练数据:通过增加更多的训练数据,可以帮助模型更好地学习数据的整体分布,减少对特定样本的依赖,从而缓解过拟合现象。

减少模型复杂度:选择适当的模型复杂度可以有效避免过拟合问题。可以通过减少模型的隐藏层、降低多项式的阶数等方式来降低模型复杂度,以提高泛化能力。

正则化:正则化是一种常用的缓解过拟合的方法。通过在损失函数中引入惩罚项,限制模型参数的大小,可以防止模型过度拟合训练数据,减少对噪声和异常样本的敏感性。

特征选择:选择与预测目标高度相关的特征,去除冗余或无关的特征,有助于减少过拟合的风险,并提高模型的泛化能力。

交叉验证:使用交叉验证可以更好地评估模型的性能,并帮助选择适当的模型和参数配置,以避免过拟合问题。

在这里插入图片描述

机器学习算法分类

监督学习
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。

监督式学习的常见应用场景

分类问题:目标值离散

回归问题:目标值连续

无监督学习
在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。

半监督学习
在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

强化学习
在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning以及时间差学习(Temporal difference learning)

强化学习是一个动态过程,上一步数据的输出是下一步数据的输入。

强化学习基本结构如图所示,和人类大脑学习的过程非常地类似,agent(人)在某种场景(state)下,做出某种行为(action),得到某种反馈(reward),这就是强化学习的四要素:状态(state)、动作(action)、策略(policy)、奖励(reward)。通过与环境的不断交互,agent可以优化自己做决策(policy)的正确性,以获取整个交互过程的最大收益。
在这里插入图片描述

意义:

提高预测性能: 了解过拟合和欠拟合的问题有助于选择适当的模型和调整参数,提高机器学习模型在大数据上的预测性能。

优化算法选择: 理解不同类型的机器学习算法有助于在大数据场景中选择合适的算法,以更好地满足任务需求。

加强模型解释力: 通过深入理解模型的过拟合和欠拟合问题,可以更好地解释模型在大数据中的预测结果,增强对模型的信任度。

因此,深入了解过拟合、欠拟合以及机器学习算法分类对于在大数据背景下构建高效、准确的机器学习和深度学习模型至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/216794.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

beebox靶场A3 low级别 xss通关教程(二)

六:xss get型 eval 通过观察我们可以发现url地址中存在一个date函数 那我们可以试一下把后面的date()函数去掉,直接写入一个alert(555) 发现直接弹出一个框,证明有xss漏洞 七:xss href 直接进入页面会看到是get方法&#xff0c…

【JVM从入门到实战】(五)类加载器

一、什么是类加载器 类加载器(ClassLoader)是Java虚拟机提供给应用程序去实现获取类和接口字节码数据的技术。 类加载器只参与加载过程中的字节码获取并加载到内存这一部分。 二、jdk8及之前的版本 类加载器分为三类: 启动类加载器-加载Ja…

Docker Compose入门:打造多容器应用的完美舞台

Docker Compose 是一个强大的工具,它允许开发者通过简单的 YAML 文件定义和管理多容器的应用。本文将深入讨论 Docker Compose 的基本概念、常用命令以及高级应用场景,并通过更为丰富和实际的示例代码,助您轻松掌握如何通过 Docker Compose 打…

VLAN协议与单臂路由

文章目录 VLAN协议与单臂路由一、VLAN的概念及优势1、分割广播域2、VLAN的优势3、VLAN数据帧 二、VLAN的种类1、静态VLAN2、动态VLAN3、VLAN划分方式 三、静态VLAN的配置1、VLAN的范围2、静态VLAN的配置2.1 配置静态VLAN的步骤2.2 vlan三种端口类型举例:配置静态VLA…

1688按关键字搜索工厂数据,商品详情页数据的采集

公共参数 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中,点击获取测试key和secret)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等]cacheStrin…

【稳定检索】2024年物理化学工程与应用力学国际会议(ICPCEAM 2024)

2024年物理化学工程与应用力学国际会议(ICPCEAM 2024) 2024 International Conference on Physical and Chemical Engineering and Applied Mechanics(ICPCEAM) 一、【会议简介】 2024年物理化学工程与应用力学国际会议(ICPCEAM 2024)将于2024年3月9日在中国上海盛大召开。本次…

SpringIOC之@EnableLoadTimeWeaving

博主介绍:✌全网粉丝5W+,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验✌ 博主作品:《Java项目案例》主要基于SpringBoot+MyBatis/MyBatis-plus+…

论文阅读:PointCLIP: Point Cloud Understanding by CLIP

CVPR2022 链接:https://arxiv.org/pdf/2112.02413.pdf 0、Abstract 最近,通过对比视觉语言预训练(CLIP)的零镜头学习和少镜头学习在2D视觉识别方面表现出了鼓舞人心的表现,即学习在开放词汇设置下将图像与相应的文本匹配。然而,…

jdk+zookeeper+kafka 搭建kafka集群

环境准备 环境资源包: jdk-8u341-linux-x64.tar.gz kafka_2.12-2.2.0.tgz zookeeper-3.4.14.tar.gz server-idip状态server110.206.120.10leaderserver210.206.120.2followerserver310.206.120.3follower 一、安装jdk 因为kafka需要Java环境,所以优先…

Linux AMH服务器管理面板本地安装与远程访问

最近,我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念,而且内容风趣幽默。我觉得它对大家可能会有所帮助,所以我在此分享。点击这里跳转到网站。 文章目录 1. Linux 安装AMH 面板2. 本地访问AMH 面板3. Linux安装…

股票放量成交后,大涨的概率有多少?

很多时候,经常有人会感觉,成交量突然放大5倍以上,后面的股价大概率会上涨,很多投顾班的老师也是给大家展示这样的感觉,那究竟有多大比例的上涨呢? 【文章仅是数据分析,不构成任何投资建议】 一…

【Docker】进阶之路:(九)Docker网络

【Docker】进阶之路:(九)Docker网络 Docker网络模式简介bridge网络模式host网络模式none网络模式container网络模式user-defined网络模式1.创建自定义的bridge网络2.使用自定义网络 高级网络配置docker network命令 为什么要了解容器的网络模…

zabbix——实现高效网络监控

在当今的数字化时代,网络和服务器的健康状况对于企业的正常运营至关重要。为了及时发现和解决潜在的问题,许多企业选择使用网络监控工具来追踪服务器的性能和网络参数。其中,Zabbix是一个功能强大且开源的网络监控工具,被广泛应用…

CSS的基本选择器及高级选择器(附详细示例以及效果图)

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中CSS的基础选择及高级选择器(详解)以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获&#xf…

微服务--07--Sentienl中使用的限流算法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Sentienl中使用的限流算法1、计数器固定窗口算法2、计数器滑动窗口算法----(默认)3、漏桶算法----(排队等待)4、令牌…

Apache Web 服务器监控工具

将Apache Web 服务器监控纳入 IT 基础架构管理策略有助于先发制人地识别性能瓶颈,这种主动监控方法提供必要的数据,以确保 Web 服务器能够胜任任务,并在需要时进行优化。保证客户获得流畅、无忧的用户体验可以大大有助于巩固他们对组织的信任…

《拥抱变化:解析极限编程》读书笔记

文章目录 一、书名和作者二、书籍概览2.1 主要论点和结构2.2 目标读者和应用场景 三、核心观点与主题3.1开发问题3.2 极限编程实践3.3 极限编程计划与设计3.4 极限编程的实现 四、亮点与启发4.1 最有影响的观点4.2 对个人专业发展的启示 五、批评与局限性5.1 可能存在的争议和过…

在Ascend昇腾硬件用npu加速paddleLite版本ocr(nnadapter)

在Ascend昇腾硬件用npu加速paddleLite版本ocr(nnadapter) 参考文档* nnadapter参考文档地址* 华为昇腾 NPU参考文档地址* PaddleLite的CAPI参考文档 一.确保cpu版本运行正常二.编译Ascend上npu加速库三.跑通npu加速版本Demo1.Demo下载地址2.参考手册网址…

.net core提示The xx field is required,One or more validation errors occurred

访问接口时缺少model中的参数时,会提示: The xx field is required One or more validation errors occurred原因是.net core webapi默认参数为不可空,因此会验证并报错。 解决方案: 在项目的.csproj中,修改Nullable…

案例057:基于微信小程序的马拉松报名系统

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…