大创项目推荐 垃圾邮件(短信)分类算法实现 机器学习 深度学习

文章目录

  • 0 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):string = re.sub(r"[^\u4e00-\u9fff]", " ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip()def get_data_in_a_file(original_path, save_path='all_email.txt'):files = os.listdir(original_path)for file in files:if os.path.isdir(original_path + '/' + file):get_data_in_a_file(original_path + '/' + file, save_path=save_path)else:email = ''# 注意要用 'ignore',不然会报错f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')# lines = f.readlines()for line in f:line = clean_str(line)email += linef.close()"""发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多"""f = open(save_path, 'a', encoding='utf8')email = [word for word in jieba.cut(email) if word.strip() != '']f.write(' '.join(email) + '\n')print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):f = open(original_path, 'r')label_list = []for line in f:# spamif line[0] == 's':label_list.append('0')# hamelif line[0] == 'h':label_list.append('1')f = open(save_path, 'w', encoding='utf8')f.write('\n'.join(label_list))f.close()print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizerdef tokenizer_jieba(line):# 结巴分词return [li for li in jieba.cut(line) if li.strip() != '']def tokenizer_space(line):# 按空格分词return [li for li in line.split() if li.strip() != '']def get_data_tf_idf(email_file_name):# 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_spacevectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')content = open(email_file_name, 'r', encoding='utf8').readlines()x = vectoring.fit_transform(content)return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as npif __name__ == "__main__":np.random.seed(1)email_file_name = 'all_email.txt'label_file_name = 'label.txt'x, vectoring = get_data_tf_idf(email_file_name)y = get_label_list(label_file_name)# print('x.shape : ', x.shape)# print('y.shape : ', y.shape)# 随机打乱所有样本index = np.arange(len(y))  np.random.shuffle(index)x = x[index]y = y[index]# 划分训练集和测试集x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)clf = svm.LinearSVC()# clf = LogisticRegression()# clf = ensemble.RandomForestClassifier()clf.fit(x_train, y_train)y_pred = clf.predict(x_test)print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。

def get_embedding_vectors(tokenizer, dim=100):embedding_index = {}with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:for line in tqdm.tqdm(f, "Reading GloVe"):values = line.split()word = values[0]vectors = np.asarray(values[1:], dtype='float32')embedding_index[word] = vectorsword_index = tokenizer.word_indexembedding_matrix = np.zeros((len(word_index)+1, dim))for word, i in word_index.items():embedding_vector = embedding_index.get(word)if embedding_vector is not None:# words not found will be 0sembedding_matrix[i] = embedding_vectorreturn embedding_matrixdef get_model(tokenizer, lstm_units):"""Constructs the model,Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation"""# get the GloVe embedding vectorsembedding_matrix = get_embedding_vectors(tokenizer)model = Sequential()model.add(Embedding(len(tokenizer.word_index)+1,EMBEDDING_SIZE,weights=[embedding_matrix],trainable=False,input_length=SEQUENCE_LENGTH))model.add(LSTM(lstm_units, recurrent_dropout=0.2))model.add(Dropout(0.3))model.add(Dense(2, activation="softmax"))# compile as rmsprop optimizer# aswell as with recall metricmodel.compile(optimizer="rmsprop", loss="categorical_crossentropy",metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])model.summary()return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/218601.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Github与Gitlab

学习目标 能够使用GitHub创建远程仓库并使用能够安装部署GitLab服务器能够使用GitLab创建仓库并使用掌握CI/CD的概念掌握蓝绿部署, 滚动更新,灰度发布的概念 GitHub是目前最火的开源项目代码托管平台。它是基于web的Git仓库,提供公有仓库和私有仓库,但私…

Amortized Bootstrapping of LWE:使用 BFV 打包处理

参考文献: [AP13] Alperin-Sheriff J, Peikert C. Practical bootstrapping in quasilinear time[C]//Annual Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1-20.[MS18] Micciancio D, Sorrell J. Ring packing and amortized F…

下午好~ 我的论文【CV边角料】(第三期)

文章目录 CV边角料Pixel ShuffleSENetCBAMGlobal Context Block (GC)Criss-Cross Attention modules (CC) CV边角料 Pixel Shuffle Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network pixelshuffle算法的实现流…

初识GroovyShell

文章目录 前言一、GroovyShell二、maven三、解决方案四、关键代码4.1 数据库配置表(pg)4.2 入参4.3 分页查询 总结 前言 项目背景:查询多个表的数据列表和详情,但不想创建过多的po、dao、resp等项目文件。 一、GroovyShell Apache Groovy是一种强大的…

rabbitmq-windows安装使用-简易后台界面-修改密码

文章目录 1.下载2.安装3.安装 RabbitMQ4.后台访问5.修改密码 1.下载 将erlang运行时和rabbitmq-windows版本,上传在csdn,下载链接。https://download.csdn.net/download/m0_67316550/88633443 2.安装 右键,以管理员身份运行rabbitmq。启动…

如何安装LUT预设?达芬奇/FCP/PR怎么安装LUT预设.cube格式文件的教程

在下载的LUT调色预设压缩文件包中,通常两个包含不同格式的LUT文件: .cube 和 .xmp 包含的 .cube 文件几乎与主流的视频编辑和色彩校正软件兼容,并且还可以在 Adobe Photoshop 等一些照片应用程序中使用。如果主要是将这些 LUT 用于视频剪辑项…

Redis-数据结构

参考资料 极客时间Redis(亚风) Redis数据结构 SDS sds(Simple Dynamic String) 字符串接结构体: struct --attribute_- ((-_packed__)) sdshdr8{uint8_t len;/* buf已保祥的字符串字节数,不包含结束标示*/uint8_t alloc&#…

day02-报表技术POI

1、基于模板导出列表数据 1.1、需求 按照以下样式导出excel 1.2、思路 首先准备一个excel模板,这个模板把复杂的样式和固定的内容先准备好并且放入到项目中,然后读取到模板后向里面放入数据。 1.3、实现 第一步:准备一个excel作为导出的…

AI 编程助手 Copilot:从对话中分析程序性能

大家好,我是木川 一、介绍 GitHub Copilot 是 GitHub 和 OpenAI 合作开发的一个 AI 辅助编程工具 官网地址:https://github.com/features/copilot 官方文档:https://docs.github.com/copilot 分析程序性能在对话功能中有提到 二、安装 在 VSC…

Ubuntu 常用命令之 ll 命令用法介绍

ll是ls -l的别名,用于在Ubuntu系统中列出目录的详细信息。ls命令用于列出目录内容,-l选项则以长格式显示,包括文件类型、权限、链接数、所有者、组、大小、最后修改时间以及文件或目录名。 这是ll命令的基本格式 ll [选项]... [文件]...这是…

Halcon参考手册异常检测知识总结

1.1异常检测介绍 本章将介绍如何使用基于深度学习的异常检测和全局上下文异常检测。通过这两种方法,我们想要检测图像是否包含异常(异常是指偏离正常的事物,未知的事物)。 异常检测或全局上下文异常检测模型学习无异常图像的共同特征。经过训练的模型将…

JS中call()、apply()、bind()改变this指向的原理

大家如果想了解改变this指向的方法,大家可以阅读本人的这篇改变this指向的六种方法 大家有没有想过这三种方法是如何改变this指向的?我们可以自己写吗? 答案是:可以自己写的 让我为大家介绍一下吧! 1.call()方法的原理…

Linux---压缩和解压缩命令

1. 压缩格式的介绍 Linux默认支持的压缩格式: .gz.bz2.zip 说明: .gz和.bz2的压缩包需要使用tar命令来压缩和解压缩.zip的压缩包需要使用zip命令来压缩,使用unzip命令来解压缩 压缩目的: 节省磁盘空间 2. tar命令及选项的使用 命令说明tar压缩和解压缩命令 …

二分查找|双指针:LeetCode:2398.预算内的最多机器人数目

作者推荐 【动态规划】【广度优先】LeetCode2258:逃离火灾 本文涉及的基础知识点 二分查找算法合集 滑动窗口 单调队列:计算最大值时,如果前面的数小,则必定被淘汰,前面的数早出队。 题目 你有 n 个机器人,给你两…

锁--07_2---- index merge(索引合并)引起的死锁

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 案例分析生产背景死锁日志表结构执行计划 EXPLAN为什么会用 index_merge(索引合并)为什么用了 index_merge就死锁了解决方案注:M…

初识Pandas函数是Python的一个库(继续更新...)

学习网页: Welcome to Python.orghttps://www.python.org/https://www.python.org/https://www.python.org/ Pandas函数库 Pandas是一个Python库,提供了大量的数据结构和数据分析工具,包括DataFrame和Series等。Pandas的函数非常丰富&…

Spring Boot3.1.6配置对应的Swagger

1. pom.xml导入Swagger依赖 <!--swagger3--> <dependency><groupId>org.springdoc</groupId><artifactId>springdoc-openapi-starter-webmvc-ui</artifactId><version>2.0.2</version> </dependency> 2.创建SwaggerCo…

自动化访客互动:提升网站效益与用户体验的关键优势

在激烈的市场竞争环境中&#xff0c;想抢占市场&#xff0c;获得收益并不容易。每一个订单的完成都要经过一定的销售周期&#xff0c;所以企业可以根据销售周期每个阶段的特点进行优化&#xff0c;留住客户。其中&#xff0c;企业可以在与客户在线互动的过程中&#xff0c;让互…

【第2期】Springboot如何快速集成SpringSecurity

简单介绍 本专栏主要结合实战讲解&#xff0c;不过多介绍细节的概念&#xff0c;概念可以通过搜索引擎查找&#xff0c;一搜一大把&#xff0c;切入正题。 本专栏的实战项目是基于SpringbootSpringSecurityRSAJWTVUE的全栈开发项目&#xff0c;每个环节都会专门讲&#xff0c;…

C语言 文件I/O(备查)

所有案列 跳转到其他。 文件打开 FILE* fopen(const char *filename, const char *mode); 参数&#xff1a;filename&#xff1a;指定要打开的文件名&#xff0c;需要加上路径&#xff08;相对、绝对路径&#xff09;mode&#xff1a;指定文件的打开模式 返回值&#xff1a;成…