智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.JAYA算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用JAYA算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.JAYA算法

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600
JAYA算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

JAYA算法参数如下:

%% 设定JAYA优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明JAYA算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219578.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】MySQL表的操作-创建查看删除和修改

文章目录 1.创建表2.查看表结构3.修改表4.删除表 1.创建表 语法: CREATE TABLE table_name (field1 datatype,field2 datatype,field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎;说明: field 表示列名datatype 表示列的类型…

flask简单应用-1

目标: 做一个搜索网页,搜索当前路径下是否含有指定关键字的文件,如果有就列出来,没有返回消息 第一步:我们需要先显示一个搜索页面,页面上需要有一个可以输入的对话框,一个按钮执行搜索 建立ht…

基于开源的JAVA mongodb jdbc 驱动 使用教程

基于开源的JAVA mongodb jdbc 驱动 使用教程介绍 介绍 本文介绍一款开源的基于JAVA的 Mongodb JDBC 驱动使用教程 开源地址 https://gitee.com/bgong/jdbc-mongodb-driver功能价值 与mybaits融合:复用mybatis的功能特性,如:缓存,if动态判断标签等特…

[计网01] 物理层 详细解析笔记,特性

计算机网络的物理层是网络协议栈中的第一层,负责传输原始的比特流(bitstream)通过物理媒介进行通信。物理层主要关注传输介质、信号的编码和调制、数据传输速率以及数据传输的物理连接等方面。 相关特性 机械特性(Mechanical Ch…

【JAVA】CyclicBarrier源码解析以及示例

文章目录 前言CyclicBarrier源码解析以及示例主要成员变量核心方法 应用场景任务分解与合并应用示例 并行计算应用示例 游戏开发应用示例输出结果 数据加载应用示例 并发工具的协同应用示例 CyclicBarrier和CountDownLatch的区别循环性:计数器的变化:用途…

C# 命令行参数解析库示例

写在前面 在日常开发中,我们经常会用到命令行参数,比如cmd下的各种指令;还有C#的控制台类型的项目,在默认入口Main函数中,那个args参数,就是有系统传入到程序进程的命令行参数;在传入的参数相对…

晚期食管癌肿瘤治疗线程分类

文章目录 1、肿瘤治疗的线数1.1 基础概念1.2 线程定义1.3 如何计算治疗线数 2 食管癌治疗指南2.1 食管癌诊疗指南2.1 CSCO 本文前半部分主要来源于参考文件1,其余部分来源于官方指南。无原创内容,全部为摘要。 1、肿瘤治疗的线数 1.1 基础概念 抗肿瘤药…

信息安全和网络安全的区别

信息安全与网络安全都属于安全领域,但它们的范围和重点不同。 信息安全主要关注数据的保护,包括对敏感数据进行加密、防止数据丢失或泄露等措施。信息安全通常与数据存储、传输和处理相关。 而网络安全更侧重于保护计算机系统和网络免受攻击、病毒、蠕…

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测 目录 SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环…

I.MX RT1170双核学习(3):多核管理之MCMGR源码分析详解

本文通过SDK中最简单的hello_world例程来说明一下双核程序如何运行。在CM7和CM4的工程中都有一个MCMGR(Multicore Manager)文件夹,它是用来管理多核之间的操作的,当然也包括我们前面提到的那些寄存器的设置。 文章目录 1 MCMGR_EarlyInit1.1 MCMGR_Trigg…

数据库交付运维高级工程师-腾讯云TDSQL

数据库交付运维高级工程师-腾讯云TDSQL上机指导,付费指导,暂定99

设计模式—装饰模式

与其明天开始,不如现在行动! 文章目录 装饰模式—穿衣服💎总结 装饰模式—穿衣服 装饰模式(Decorator)可以动态的给对象添加一些额外的职责。 Component是定义一个对象接口,可以给这些对象动态地添加职责。…

关于mysql存储过程中N/A和null的使用注意事项

oracle和mysql的存储过程大同小异,但是一些细节还是需要留意的。最近发现mysql的N/A和null在存储过程中容易忽略的一点,这会导致我们的存储过程提前结束。今天突然想起来了就记录一下。   mysql的N/A和null区别网上也说得很详细了,我就不赘…

RabbitMq交换机详解

目录 1.交换机类型2.Fanout交换机2.1.声明队列和交换机2.2.消息发送2.3.消息接收2.4.总结 3.Direct交换机3.1.声明队列和交换机3.2.消息接收3.3.消息发送3.4.总结 4.Topic交换机4.1.说明4.2.消息发送4.3.消息接收4.4.总结 5.Headers交换机5.1.说明5.2.消息发送5.3.消息接收5.4.…

开源 LLM 微调训练指南:如何打造属于自己的 LLM 模型

一、介绍 今天我们来聊一聊关于LLM的微调训练,LLM应该算是目前当之无愧的最有影响力的AI技术。尽管它只是一个语言模型,但它具备理解和生成人类语言的能力,非常厉害!它可以革新各个行业,包括自然语言处理、机器翻译、…

【POI的如何做大文件的写入】

🔓POI如何做大文件的写入 🏆文件和POI之间的区别是什么?🏆POI对于当今的社会发展有何重要性?🏆POI大文件的写入🎖️使用XSSF写入文件🎖️使用SXSSFWorkbook写入文件🎖️对…

webpack详细教程

1,什么是webpackwebpack | webpack中文文档 | webpack中文网 Webpack 不仅是一个模块打包器(bundler),更完整的讲是一个前端自动化构建工具。在 Webpack 看来前端的所有资源文件(s/json/css/img/less/...)都会作为横块处理它将根据模块的依赖关系进行静…

Matlab示例-Examine 16-QAM Using MATLAB学习笔记

​工作之余学习16-QAM 写在前面 网上看到许多示例,但一般都比较难以跑通。所以,还是老方法,先将matlab自带的例子研究下。 Examine 16-QAM Using MATLAB Examine 16-QAM Using MATLAB 或者,在matlab中,键入&#x…

Windows11环境下配置深度学习环境(Pytorch)

目录 1. 下载安装Miniconda2. 新建Python3.9虚拟环境3. 下载英伟达驱动4. 安装CUDA版Pytorch5. CPU版本pytorch安装 1. 下载安装Miniconda 下载安装包:镜像文件地址 将Miniconda相关路径添加至系统变量的路径中。 打开Anaconda Powershell Prompt,输入…

如何将数据库导入MySQL的办法

在电脑cmd终端进行导入 首先找到MySQL中bin的位置 第一步:找到MySQL 第二步:进入MySQL 第三步:打开bin 第四步:输入cmd进入终端 第五步: 输入mysql -uroot -p 然后会弹出enter password: 输入你的密码…