正点原子驱动开发BUG(一)--SPI无法正常通信

目录

    • 一、问题描述
    • 二、讲该问题的解决方案
    • 三、imx6ull的spi适配器驱动程序控制片选分析
        • 3.1 设备icm20608的驱动程序分析
        • 3.2 imx的spi适配器的驱动程序分析
    • 四、BUG修复测试
    • 五、其他问题

一、问题描述

使用正点的im6ull开发板进行spi通信驱动开发实验的时候,主机无法与从机进行正常通信。就算使用正点的例程,也无法正常通信。读不到从机寄存器中的值。以读取从机ID为例,例子为正点原子的例程基础上添加了几行printk用来打印信息:

void icm20608_reginit(void)
{u8 value = 1;u8 test = 1;icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x80);		/* 复位 */mdelay(50);icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x01);		/* 关闭睡眠 */mdelay(50);printk("ICM20608 ID = %#X\r\n", value);	value = icm20608_read_onereg(&icm20608dev, ICM20_WHO_AM_I);	 /* 这里读出来的ID不对 */printk("ICM20608 ID = %#X\r\n", value);	...
}
...
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)
{u8 data = 0;icm20608_read_regs(dev, reg, &data, 1);return data;
}
...
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{int ret = -1;unsigned char txdata[1];unsigned char * rxdata;struct spi_message m;struct spi_transfer *t;struct spi_device *spi = (struct spi_device *)dev->private_data;t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);	/* 申请内存 */if(!t) {return -ENOMEM;}rxdata = kzalloc(sizeof(char) * len, GFP_KERNEL);	/* 申请内存 */if(!rxdata) {goto out1;}/* 一共发送len+1个字节的数据,第一个字节为寄存器首地址,一共要读取len个字节长度的数据,*/txdata[0] = reg | 0x80;		/* 写数据的时候首寄存器地址bit8要置1 */			t->tx_buf = txdata;			/* 要发送的数据 */t->rx_buf = rxdata;			/* 要读取的数据 */t->len = len+1;				/* t->len=发送的长度+读取的长度 */spi_message_init(&m);		/* 初始化spi_message */spi_message_add_tail(t, &m);/* 将spi_transfer添加到spi_message队列 */ret = spi_sync(spi, &m);	/* 同步发送 */if(ret) {goto out2;}memcpy(buf , rxdata+1, len);  /* 只需要读取的数据 */out2:kfree(rxdata);					/* 释放内存 */
out1:	kfree(t);						/* 释放内存 */return ret;
}

读ID失败,读出来ID是0,单纯是因为调用icm20608_read_onereg函数时会把返回值初始化为0,也就是根本没读到寄存器中内容

在这里插入图片描述

二、讲该问题的解决方案

首先直接说明问题所在:如果使用正点的spi驱动开发例程则设备树中spi适配器设备节点下的cs-gpios属性不能写成cs-gpio。当使用的属性名位cs-gpios的时候是由该spi适配器匹配的驱动程序来控制片选。

其实正点原子也在开发指南中说了:

2 行,设置当前片选数量为 1,因为就只接了一个 ICM20608。
第 3 行,一定要使用 “cs-gpios”属性来描述片选引脚,SPI 主机驱动就会控制片选引脚。
第 5 行,设置 IO 要使用的 pinctrl 子节点,也就是我们在示例代码 62.5.1.1 中新建的
pinctrl_ecspi3。

正点提供的linux源码中的documentation中也提到怎么编写对应设备树了,该文件位于linux源码位置/Documentation/devicetree/bindings/spi中:

* Freescale (Enhanced) Configurable Serial Peripheral Interface(CSPI/eCSPI) for i.MXRequired properties:
- compatible :- "fsl,imx1-cspi" for SPI compatible with the one integrated on i.MX1- "fsl,imx21-cspi" for SPI compatible with the one integrated on i.MX21- "fsl,imx27-cspi" for SPI compatible with the one integrated on i.MX27- "fsl,imx31-cspi" for SPI compatible with the one integrated on i.MX31- "fsl,imx35-cspi" for SPI compatible with the one integrated on i.MX35- "fsl,imx51-ecspi" for SPI compatible with the one integrated on i.MX51
- reg : Offset and length of the register set for the device
- interrupts : Should contain CSPI/eCSPI interrupt
- fsl,spi-num-chipselects : Contains the number of the chipselect
- cs-gpios : Specifies the gpio pins to be used for chipselects.
- clocks : Clock specifiers for both ipg and per clocks.
- clock-names : Clock names should include both "ipg" and "per"
See the clock consumer binding,Documentation/devicetree/bindings/clock/clock-bindings.txt
- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,Documentation/devicetree/bindings/dma/dma.txt
- dma-names: DMA request names should include "tx" and "rx" if present.Example:ecspi@70010000 {#address-cells = <1>;#size-cells = <0>;compatible = "fsl,imx51-ecspi";reg = <0x70010000 0x4000>;interrupts = <36>;fsl,spi-num-chipselects = <2>;cs-gpios = <&gpio3 24 0>, /* GPIO3_24 */<&gpio3 25 0>; /* GPIO3_25 */dmas = <&sdma 3 7 1>, <&sdma 4 7 2>;dma-names = "rx", "tx";
};

但是我太信任正点提供的linux源码了,直接用了正点提供的出厂linux源码,这个出厂linux源码中的READ_ME解释如下:

说明:
1、使用此uboot和linux源码可以编译得到正点原子I.MX6U出货时的uboot和Linux固件。兼容正点原子所有RGB屏,板子上所有功能也相应调试好。直接按【正点原子】I.MX6U用户快速体验Vx.x.pdf文档编译出来使用!
2、驱动指南也提及过编译这里的源码,只是教学编译体验。问题答疑:
1、看到1、例程源码\10、开发板教程对应的uboot和linux源码这里还有一份正点原子的uboot和linux源码,为什么会有两份源码?
答:1、例程源码\10、开发板教程对应的uboot和linux源码是正点原子驱动指南做驱动实验、移植uboot和linux所用的源码。而出厂源码则是用于出货所使用,客户无需再调试。直接编译使用!2、为什么要和出厂源码分开?
答:由于多种原因,出厂使用的源码不能与驱动指南所使用的源码同时进行。出厂源码会随时修复bug或者添加新的驱动以兼容正点原子的其他模块。3、那我可不可以这么理解:出厂源码是给客户直接用在产品上使用,而教程源码则是用于初学者用于学习驱动和移植uboot和Linux上使用?
答:恩,可以这么理解。因为出厂源码是几乎无需再调试了,适用正点原子的ALPHA和Mini开发板,给一些快速上手的客户使用!而教程源码则是用于学习或者自己开发使用!

他说的是出厂源码是几乎无需再调试了,适用于正点原子的ALPHA开发板可以直接上手用,我就直接用了。但其实他的设备树是这么写的:

&ecspi3 {fsl,spi-num-chipselects = <1>;cs-gpio = <&gpio1 20 GPIO_ACTIVE_LOW>;		/* 必须使用cs-gpios属性名来描述片选引脚(如果你想让spi适配器驱动程序来设置片选的话) */pinctrl-names = "default";pinctrl-0 = <&pinctrl_ecspi3>;	/* 难不成是因为这里是pinctrl-0,这个0正好对应这第0通道,即icm20608 */status = "okay";spidev: icm20608@0 {compatible = "alientek,icm20608";spi-max-frequency = <8000000>;reg = <0>;};
};

打眼一看内容跟正点的驱动指南中提到的都一样,所以我就觉得没啥问题,但是实际上可以看到,有一个属性名写成了cs-gpio而不是cs-gpios,这是与正点的spi驱动开发例程不匹配的。为什么不匹配?这得分析分析适配器的驱动程序

三、imx6ull的spi适配器驱动程序控制片选分析

3.1 设备icm20608的驱动程序分析

首先说明问题:问题出现在厂商编写的spi适配器驱动程序上。但在此之前,我们要先来看看我们的设备驱动,也就是正点使用的设备icm20608的驱动程序中的一个函数:spi_setup()

static int icm20608_probe(struct spi_device *spi)
{.../*初始化spi_device */spi->mode = SPI_MODE_0;	/*MODE0,CPOL=0,CPHA=0*/spi_setup(spi);icm20608dev.private_data = spi; /* 设置私有数据 *//* 初始化ICM20608内部寄存器 */icm20608_reginit();		return 0;
}

该函数传入一个struct spi_device类型的变量。正点驱动对这个函数一带而过,只是说这个函数必须得有。其实就是这个函数中出了问题。该函数位于drivers/spi/spi.c中,我只列出源码中与错误相关的部分:

int spi_setup(struct spi_device *spi)
{unsigned	bad_bits, ugly_bits;int		status = 0;...spi_set_cs(spi, false);if (spi->master->setup)status = spi->master->setup(spi);...return status;
}
...
...
static void spi_set_cs(struct spi_device *spi, bool enable)
{if (spi->mode & SPI_CS_HIGH)enable = !enable;if (spi->cs_gpio >= 0)gpio_set_value(spi->cs_gpio, !enable);else if (spi->master->set_cs)spi->master->set_cs(spi, !enable);
}

spi_setup调用的spi_set_cs函数中可以看到,如果spi->cs_gpio >= 0,函数调用gpio_set_value(spi->cs_gpio, !enable)来设置某个goio口的电平,比如在正点的教程中如果要选中icm20608外设,那么就要设置gpio1_20这个gpio口的电平,所以应该出现的情况是spi->cs_gpio = 20。如果没满足第一个if,就会判断第二个else if,这个master->set_cs根本没设置,所以也用不到。

那么spi->cs_gpio是在哪里设置的呢?在spi.c文件中有这么一个函数spi_add_device(),截取出相关的内容:

int spi_add_device(struct spi_device *spi)
{static DEFINE_MUTEX(spi_add_lock);struct spi_master *master = spi->master;struct device *dev = master->dev.parent;int status;/* Chipselects are numbered 0..max; validate. */if (spi->chip_select >= master->num_chipselect) {dev_err(dev, "cs%d >= max %d\n",spi->chip_select,master->num_chipselect);return -EINVAL;}...if (master->cs_gpios)spi->cs_gpio = master->cs_gpios[spi->chip_select];...
}

可以看到在最后一个if中,如果master->cs_gpios不为0,那么就会设置spi->cs_gpio = master->cs_gpios[spi->chip_select]。这个spi->chip_select相当于master->cs_gpios这个数组的索引(master->cs_gpioscs_gpios的是struct spi_master结构体下的一个成员变量,为一个int类型的指针,其实就是一个数组),这个会在下一部分提到。

spi->chip_select又是在哪设置的呢?看一下spi.c文件中的of_register_spi_device()函数:

#if defined(CONFIG_OF)
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{struct spi_device *spi;int rc;u32 value;/* Alloc an spi_device */spi = spi_alloc_device(master);if (!spi) {dev_err(&master->dev, "spi_device alloc error for %s\n",nc->full_name);rc = -ENOMEM;goto err_out;}/* Select device driver */rc = of_modalias_node(nc, spi->modalias,sizeof(spi->modalias));if (rc < 0) {dev_err(&master->dev, "cannot find modalias for %s\n",nc->full_name);goto err_out;}/* Device address */rc = of_property_read_u32(nc, "reg", &value);if (rc) {dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",nc->full_name, rc);goto err_out;}spi->chip_select = value;.../* Register the new device */rc = spi_add_device(spi);if (rc) {dev_err(&master->dev, "spi_device register error %s\n",nc->full_name);goto err_out;}return spi;
}

该函数会调用of_property_read_u32()函数解析设备树中的spi设备的reg属性值,并赋值给变量value而在设备树中这个值中填入的正是片选值,然后设置spi->chip_select = value,并调用刚刚提到的spi_add_device()函数。该函数会在of_register_spi_devices()函数中调用:

static void of_register_spi_devices(struct spi_master *master)
{struct spi_device *spi;struct device_node *nc;if (!master->dev.of_node)return;for_each_available_child_of_node(master->dev.of_node, nc) {spi = of_register_spi_device(master, nc);if (IS_ERR(spi))dev_warn(&master->dev, "Failed to create SPI device for %s\n",nc->full_name);}
}

就相当于可能会注册很多个spi设备,所以用个for循环来一个一个注册。这个注册很多个spi设备的函数会在spi_register_master()函数中被调用,而这个函数是跟spi适配器有关。

可以看到,最终的最终,spi->cs_gpio其实是跟master->cs_gpios有关系,并且上述函数的调用的源头也是spi_register_master()函数。所以必须得去看spi适配器的驱动函数了。但在此之前先来看一下当设备树中写的属性为cs-gpio时出现的情况,我们在驱动程序中编写如下测试代码:

static int icm20608_probe(struct spi_device *spi)
{.../*初始化spi_device */spi->mode = SPI_MODE_0;	/*MODE0,CPOL=0,CPHA=0*/spi_setup(spi);printk("chip select:%d\r\n", spi->chip_select);printk("cs gpio:%d\r\n", spi->cs_gpio);icm20608dev.private_data = spi; /* 设置私有数据 */...return 0;
}

注册编译出来的ko模块的时候结果如下:

在这里插入图片描述
可以看到,spi->chip_select正常获取到了设备树中spi设备reg属性的值,但是spi->cs_gpio却没有获取到我们想要获取的gpio号20吗,而是-2。至于为什么,需要看下一部分。

3.2 imx的spi适配器的驱动程序分析

在第二部分中列出的设备树代码中只是列出了引用ecspi3时的一些修改,该设备真正定义在imx6ull.dtsi下:

ecspi3: ecspi@02010000 {#address-cells = <1>;#size-cells = <0>;compatible = "fsl,imx6ul-ecspi", "fsl,imx51-ecspi";reg = <0x02010000 0x4000>;interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>;clocks = <&clks IMX6UL_CLK_ECSPI3>,<&clks IMX6UL_CLK_ECSPI3>;clock-names = "ipg", "per";dmas = <&sdma 7 7 1>, <&sdma 8 7 2>;dma-names = "rx", "tx";status = "disabled";
};

其中的属性compatible = "fsl,imx6ul-ecspi", "fsl,imx51-ecspi";,根据这个去找对应的驱动程序,找到的驱动程序为drivers/spi/spi-imx.c,找到其.probe函数,并列出其与问题相关的部分:

static int spi_imx_probe(struct platform_device *pdev)
{struct device_node *np = pdev->dev.of_node;const struct of_device_id *of_id =of_match_device(spi_imx_dt_ids, &pdev->dev);struct spi_imx_master *mxc_platform_info =dev_get_platdata(&pdev->dev);struct spi_master *master;struct spi_imx_data *spi_imx;struct resource *res;int i, ret, num_cs, irq;if (!np && !mxc_platform_info) {dev_err(&pdev->dev, "can't get the platform data\n");return -EINVAL;}ret = of_property_read_u32(np, "fsl,spi-num-chipselects", &num_cs);	/* 获取到num_cs为1 */if (ret < 0) {if (mxc_platform_info)num_cs = mxc_platform_info->num_chipselect;elsereturn ret;}master = spi_alloc_master(&pdev->dev,sizeof(struct spi_imx_data) + sizeof(int) * num_cs);	/* 这个函数会把num_chipselect初始化为1 */if (!master)return -ENOMEM;...spi_imx->bitbang.master = master;for (i = 0; i < master->num_chipselect; i++) {int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);if (!gpio_is_valid(cs_gpio) && mxc_platform_info)	/* gpio_is_valid: asm-generic/gpio.h return 1 or 0*/cs_gpio = mxc_platform_info->chipselect[i];spi_imx->chipselect[i] = cs_gpio;if (!gpio_is_valid(cs_gpio))continue;ret = devm_gpio_request(&pdev->dev, spi_imx->chipselect[i],DRIVER_NAME);if (ret) {dev_err(&pdev->dev, "can't get cs gpios\n");goto out_master_put;}}spi_imx->bitbang.chipselect = spi_imx_chipselect;spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;spi_imx->bitbang.txrx_bufs = spi_imx_transfer;spi_imx->bitbang.master->setup = spi_imx_setup;spi_imx->bitbang.master->cleanup = spi_imx_cleanup;spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;...master->dev.of_node = pdev->dev.of_node;ret = spi_bitbang_start(&spi_imx->bitbang);...return ret;
}

并会在spi_bitbang_start函数中调用了spi_register_master()函数,也就是上一部分提到的很多函数的源头,向内核注册spi_master设备,该函数位于drivers/spi/spi-bitbang.c中,列出相关部分:

int spi_bitbang_start(struct spi_bitbang *bitbang)
{struct spi_master *master = bitbang->master;int ret;if (!master || !bitbang->chipselect)return -EINVAL;spin_lock_init(&bitbang->lock);...ret = spi_register_master(spi_master_get(master));if (ret)spi_master_put(master);return 0;
}

接下来我们就可以看一下spi_register_master()这个函数了。上一部分讲的函数主要作用是帮助注册spi设备,而这个函数的作用是向内核注册spi适配器设备,该函数同样位于spi.c中,只列出与我们的bug相关的代码:

int spi_register_master(struct spi_master *master)
{static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);struct device		*dev = master->dev.parent;struct boardinfo	*bi;int			status = -ENODEV;int			dynamic = 0;if (!dev)return -ENODEV;status = of_spi_register_master(master);.../* Register devices from the device tree and ACPI */of_register_spi_devices(master);		/* 这里会调用of_register_spi_device */acpi_register_spi_devices(master);
done:return status;
}

关键函数就是of_spi_register_master()这个函数,该函数同样定义在spi.c中,其源码如下:

#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{int nb, i, *cs;struct device_node *np = master->dev.of_node;printk("in of_spi_register_master?\r\n");  /* 我自己加的test,判断一下CONFIG_OF这个宏定义是否开启了 */if (!np)return 0;nb = of_gpio_named_count(np, "cs-gpios");master->num_chipselect = max_t(int, nb, master->num_chipselect);/* Return error only for an incorrectly formed cs-gpios property */if (nb == 0 || nb == -ENOENT)return 0;else if (nb < 0)return nb;cs = devm_kzalloc(&master->dev,sizeof(int) * master->num_chipselect,GFP_KERNEL);master->cs_gpios = cs;if (!master->cs_gpios)return -ENOMEM;for (i = 0; i < master->num_chipselect; i++)cs[i] = -ENOENT;for (i = 0; i < nb; i++)cs[i] = of_get_named_gpio(np, "cs-gpios", i);return 0;
}

从这个函数中可以看出,该函数首先调用of_gpio_named_count来统计cs-gpios这个属性中设置的gpio的个数。很不幸,我们在设备树中把属性写成了cs-gpio,所以该函数找不到节点,就会返回负值。然后该函数将master->num_chipselect设定为了master->num_chipselectnb这两个变量中的最大值,master->num_chipselect这个变量会在.probe函数中通过读取设备树中spi适配器设备节点中的"fsl,spi-num-chipselects"属性来初始化。根据设备树来看,该属性的值被设为了1。

前文提到,master->cs_gpios是一个int类型的指针,所以在该函数中将他指向了一段使用devm_kzalloc()函数分配的内存,可以理解为现在master->cs_gpios就是一个数组了,里面有num_chipselect个数据

然后该函数调用两个for循环,来对master->cs_gpios这个数组进行初始化,因为master->num_chipselect为1,所以第一个for循环正常执行,csp[i] = -ENOENT而这个宏定义ENOENT恰恰就是2。并且因为变量nb是个负数,所以第二个for不会执行,就算执行这个循环他也根本找不到"cs-gpios"这个属性(我写的设备树少了一个s)。

所以综上,master->cs_gpios全被初始化为了-2,导致第一部分提到的spi设备结构体中的变量(即spi->cs_gpio)也为-2,从而导致在调用gpio_set_value()函数来对spi->cs_gpio这个gpio号的时候没有正确设置。

四、BUG修复测试

前面已经说明了,把设备树中的属性改为"cs-gpios"应该就行了:

&ecspi3 {fsl,spi-num-chipselects = <1>;cs-gpios = <&gpio1 20 GPIO_ACTIVE_LOW>;		/* 必须使用cs-gpio属性来描述片选引脚,可能spi适配器驱动里用的就是这个名称"cs-gpio" */pinctrl-names = "default";pinctrl-0 = <&pinctrl_ecspi3>;	/* 难不成是因为这里是pinctrl-0,这个0正好对应这第0通道,即icm20608 */status = "okay";spidev: icm20608@0 {compatible = "alientek,icm20608";spi-max-frequency = <8000000>;reg = <0>;};
};

然后重新编译设备树,测试结果如下:
在这里插入图片描述
gpio口获取也对了,也能正确读到icm20608的设备id了。

那如果我就是想用cs-gpio这个名呢?那也有办法,就是在你自己写的设备驱动程序中,使用of_get_named_gpio()函数来手动获取gpio号,但是传入该函数的属性名就不要是cs-gpios了,而应该是cs-gpio(如果用这样的方法相当于跳过spi框架和spi适配器驱动函数,那么你取啥名都可以,我把属性写成本gpios-cs也没问题)。然后再使用gpio_set_value()函数来设置这个gpio口即可

五、其他问题

其实有个问题不知道有没有注意到,就是在分析驱动程序的时候出现了一个#ifdef CONFIG_OF,上述很多函数都依赖于这个宏必须得被定义了才能起作用。这个宏我根本没找到在哪里定义的,如果没定义这个宏,那之前的分析就白费了,所以找了一个依赖于这个宏的函数进行测试:

#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{int nb, i, *cs;struct device_node *np = master->dev.of_node;printk("in of_spi_register_master?\r\n");  /* 我自己加的test,判断一下CONFIG_OF这个宏定义是否开启了 */...return 0;
}

然后重新编译内核,再次启动内核,启动过程中打印结果如下:

在这里插入图片描述
看来这个宏确实是定义了,但是定义在哪个位置我真没找到,有知道的老哥可以教一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219991.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop和Spark的区别

Hadoop 表达能力有限。磁盘IO开销大&#xff0c;延迟度高。任务和任务之间的衔接涉及IO开销。前一个任务完成之前其他任务无法完成&#xff0c;难以胜任复杂、多阶段的计算任务。 Spark Spark模型是对Mapreduce模型的改进&#xff0c;可以说没有HDFS、Mapreduce就没有Spark。…

Windows使用VNC Viewer远程桌面Ubuntu【内网穿透】

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…

Unity中URP下的半透明效果实现

文章目录 前言一、实现半透明的步骤1、修改Blend模式&#xff0c;使之透明2、打开深度写入&#xff0c;防止透明对象穿模3、在Tags中&#xff0c;修改渲染类型和渲染队列为半透明 Transparent 二、对透明效果实现从下到上的透明渐变1、 我们在 Varying 中&#xff0c;定义一个v…

LeedCode刷题---二分查找类问题

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、二分查找 题目链接&#xff1a;二分查找 题目描述 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一…

垃圾回收 (GC) 在 .NET Core 中是如何工作的?

提起GC大家肯定不陌生&#xff0c;但是让大家是说一下GC是怎么运行的&#xff0c;可能大多数人都不太清楚&#xff0c;这也很正常&#xff0c;因为GC这东西在.NET基本不用开发者关注&#xff0c;它是依靠程序自动判断来释放托管堆的&#xff0c;我们基本不需要主动调用Collect(…

安装finallshell并连接linux

下载 官网地址&#xff1a;finallshell下载地址 安装 一直下一步即可安装成功&#xff0c;然后进入软件&#xff0c;如下就是第一次进入的界面了 然后我们想要链接linux需要知道linux的ip地址&#xff0c;我们去linux下查看ip地址 ifconfig #查看ip命令运行命令之后&#xf…

【sqli靶场】第六关和第七关通关思路

目录 前言 一、sqli靶场第六关 1.1 判断注入类型 1.2 观察报错 1.3 使用extractvalue函数报错 1.4 爆出数据库中的表名 二、sqli靶场第七关 1.1 判断注入类型 1.2 判断数据表中的字段数 1.3 提示 1.4 构造poc爆库名 1.5 构造poc爆表名 1.6 构造poc爆字段名 1.7 构造poc获取账…

Note3---初阶二叉树~~

目录​​​​​​​ 前言&#x1f344; 1.树概念及结构☎️ 1.1 树的概念&#x1f384; 1.2 树的相关概念&#x1f99c; 1.2.1 部分概念的加深理解&#x1f43e; 1.2.2 树与非树&#x1fab4; 1.3 树的表示&#x1f38b; 1.4 树在实际中的运用&#xff08;表示文件系统…

slurm 23.11.0集群 debian 11.5 安装

slurm 23.11.0集群 debian 11.5 安装 用途 Slurm(Simple Linux Utility for Resource Management&#xff0c; http://slurm.schedmd.com/ )是开源的、具有容错性和高度可扩展的Linux集群超级计算系统资源管理和作业调度系统。超级计算系统可利用Slurm对资源和作业进行管理&a…

linux(centos7)离线安装mysql-5.7.35-1.el7.x86_64.rpm-bundle.tar

1. 卸载mariadb相关rpm # 查找 rpm -qa|grep mariadb rpm -qa|grep mysql# 卸载 rpm -e --nodeps mariadb... rpm -e --nodeps mysql...2. 删除mysql相关文件 # 查找 find / -name mysql# 删除 rm -rf /var/lib/mysql...3. 查看是否有相关依赖&#xff0c;没有需安装 rpm -q…

59. 螺旋矩阵 II(java实现,史上最详细教程,想学会的进!!!)

今天来分享一下螺旋矩阵的解题思路及代码的实现。 题目描述如下&#xff1a; 首先拿到这道题&#xff0c;首先不要慌张&#xff0c;我们来仔细分析一下会发现并没有那么难。 首先看下边界的元素是1、2、3递增的&#xff0c;那么我们也许可以根据这一点先把边界的元素一个一个给…

Leetcode刷题笔记题解(C++):224. 基本计算器

思路&#xff1a; step 1&#xff1a;使用栈辅助处理优先级&#xff0c;默认符号为加号。 step 2&#xff1a;遍历字符串&#xff0c;遇到数字&#xff0c;则将连续的数字字符部分转化为int型数字。 step 3&#xff1a;遇到左括号&#xff0c;则将括号后的部分送入递归&#x…

WPF 显示PDF、PDF转成图片

1.NuGet 安装 O2S.Components.PDFView4NET.WPF 2.添加组件 工具箱中&#xff0c;空白处 右键&#xff0c;选择项 WPF组件 界面&#xff0c;选择NuGet安装库对面路径下的 O2S.Components.PDFView4NET.WPF.dll 3.引入组件命名空间&#xff0c;并使用 <Windowxmlns"htt…

【Hadoop】

Hadoop是一个开源的分布式离线数据处理框架&#xff0c;底层是用Java语言编写的&#xff0c;包含了HDFS、MapReduce、Yarn三大部分。 组件配置文件启动进程备注Hadoop HDFS需修改需启动 NameNode(NN)作为主节点 DataNode(DN)作为从节点 SecondaryNameNode(SNN)主节点辅助分…

C# 图解教程 第5版 —— 第18章 泛型

文章目录 18.1 什么是泛型18.2 C# 中的泛型18.3 泛型类18.3.1 声明泛型类18.3.2 创建构造类型18.3.3 创建变量和实例18.3.4 使用泛型的示例18.3.5 比较泛型和非泛型栈 18.4 类型参数的约束18.4.1 Where 子句18.4.2 约束类型和次序 18.5 泛型方法18.5.1 声明泛型方法18.5.2 调用…

c++ qt 窗口开发中 俩按钮组合 配合 显影 已解决

在日常项目中&#xff0c;有这么需求&#xff0c;还想窗口移动&#xff0c;还想 右侧关闭 还能tab栏点击显影的需求&#xff0c;不得使用 qt模拟点击事件 进行功能优化 特大杯 大杯 控制 窗口显影&#xff0c; 咖啡 按钮 显示窗口 可乐 豆浆 不显示窗口 四个按钮的 互斥关…

【网络安全】-Linux操作系统—操作系统发展历史与Linux

文章目录 操作系统发展历史初期的操作系统分时操作系统个人计算机操作系统 Linux的诞生UNIX与GNU项目Linux内核的创建 Linux的特点开放源代码多样性社区支持 Linux的应用服务器和超级计算机嵌入式系统桌面系统 总结 操作系统发展历史 操作系统&#xff08;Operating System&am…

YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)

一、本文介绍 本文给大家带来的CARAFE&#xff08;Content-Aware ReAssembly of FEatures&#xff09;是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法&#xff08;就是我们的Upsample&#xff09;的性能。CARAFE的核心思想是&#xff1a;使用…

饥荒Mod 开发(十一):修改物品堆叠

饥荒Mod 开发(十)&#xff1a;制作一把AOE武器 饥荒Mod 开发(十二)&#xff1a;一键制作 饥荒中物品栏有限&#xff0c;要拾取的物品有很多&#xff0c;经常装不下要忍痛丢掉各种东西&#xff0c;即使可以将物品放在仓库但是使用不方便&#xff0c;所以可以将物品的堆叠个数设…

17.Oracle中instr()函数查询字符位置

1、instr()函数的格式 &#xff08;俗称&#xff1a;字符查找函数&#xff09; 格式一&#xff1a;instr( string1, string2 ) // instr(源字符串, 目标字符串) 格式二&#xff1a;instr( string1, string2 [, start_position [, nth_appearance ] ] ) // instr(源字符…