大创项目推荐 深度学习 大数据 股票预测系统 - python lstm

文章目录

  • 0 前言
  • 1 课题意义
    • 1.1 股票预测主流方法
  • 2 什么是LSTM
    • 2.1 循环神经网络
    • 2.1 LSTM诞生
  • 2 如何用LSTM做股票预测
    • 2.1 算法构建流程
    • 2.2 部分代码
  • 3 实现效果
    • 3.1 数据
    • 3.2 预测结果
        • 项目运行展示
        • 开发环境
        • 数据获取
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 大数据 股票预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题意义

利用神经网络模型如果能够提高对股票价格的预测精度,更好地掌握股票价格发展趋势,这对于投资者来说可以及时制定相应的发展策略,更好地应对未来发生的不确定性事件,对于个人来说可以降低投资风险,减少财产损失,实现高效投资,具有一定的实践价值。

1.1 股票预测主流方法

股票市场复杂、非线性的特点使我们难以捉摸其变化规律,目前有很多预测股票走势的论文和算法。

定量分析从精确的数据资料中获得股票发展的价值规律,通过建立模型利用数学语言对股市的发展情况做出解释与预测。

目前常用的定量分析方法有:

  • 传统时间序列预测模型
  • 马尔可夫链预测
  • 灰色系统理论预测
  • 遗传算法
  • 机器学习预测等方法

2 什么是LSTM

LSTM是长短期记忆网络(LSTM,Long Short-Term Memory),想要理解什么是LSTM,首先要了解什么是循环神经网络。

2.1 循环神经网络

对于传统的BP神经网络如深度前馈网络、卷积神经网络来说,同层及跨层之间的神经元是独立的,但实际应用中对于一些有上下联系的序列来说,如果能够学习到它们之间的相互关系,使网络能够对不同时刻的输入序列产生一定的联系,像生物的大脑一样有“记忆功能”,这样的话我们的模型也就会有更低的训练出错频率及更好的泛化能力。

JordanMI提出序列理论,描述了一种体现“并行分布式处理”的网络动态系统,适用于语音生成中的协同发音问题,并进行了相关仿真实验,ElmanJL认为连接主义模型中对时间如何表示是至关重要的,1990年他提出使用循环连接为网络提供动态内存,从相对简单的异或问题到探寻单词的语义特征,网络均学习到了有趣的内部表示,网络还将任务需求和内存需求结合在一起,由此形成了简单循环网络的基础框架。

循环神经网络(RNN)之间的神经元是相互连接的,不仅在层与层之间的神经元建立连接,而且每一层之间的神经元也建立了连接,隐藏层神经元的输入由当前输入和上一时刻隐藏层神经元的输出共同决定,每一时刻的隐藏层神经元记住了上一时刻隐藏层神经元的输出,相当于对网络增添了“记忆”功能。我们都知道在输入序列中不可避免会出现重复或相似的某些序列信息,我们希望RNN能够保留这些记忆信息便于再次调用,且RNN结构中不同时刻参数是共享的,这一优点便于网络在不同位置依旧能将该重复信息识别出来,这样一来模型的泛化能力自然有所上升。

RNN结构如下:

在这里插入图片描述

2.1 LSTM诞生

RNN在解决长序列问题时未能有良好的建模效果,存在长期依赖的弊端,对此HochreiterS等人对神经单元做出了改进,引入自循环使梯度信息得以长时间持续流动,即模型可以拥有长期记忆信息,且自循环权重可以根据前后信息进行调整并不是固定的。作为RNN的一种特殊结构,它可以根据前后输入情况决定历史信息的去留,增进的门控机制可以动态改变累积的时间尺度进而控制神经单元的信息流,这样神经网络便能够自己根据情况决定清除或保留旧的信息,不至于状态信息过长造成网络崩溃,这便是长短期记忆(LSTM)网络。随着信息不断流入,该模型每个神经元内部的遗忘门、输入门、输出门三个门控机制会对每一时刻的信息做出判断并及时进行调整更新,LSTM模型现已广泛应用于无约束手写识别、语音识别、机器翻译等领域。

在这里插入图片描述

2 如何用LSTM做股票预测

2.1 算法构建流程

在这里插入图片描述

2.2 部分代码

import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tfimport pandas as pdimport mathdef LSTMtest(data):n1 = len(data[0]) - 1 #因为最后一位为labeln2 = len(data)print(n1, n2)# 设置常量input_size = n1  # 输入神经元个数rnn_unit = 10    # LSTM单元(一层神经网络)中的中神经元的个数lstm_layers = 7  # LSTM单元个数output_size = 1  # 输出神经元个数(预测值)lr = 0.0006      # 学习率train_end_index = math.floor(n2*0.9)  # 向下取整print('train_end_index', train_end_index)# 前90%数据作为训练集,后10%作为测试集# 获取训练集# time_step 时间步,batch_size 每一批次训练多少个样例def get_train_data(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):batch_index = []data_train = data[train_begin:train_end]normalized_train_data = (data_train - np.mean(data_train, axis=0)) / np.std(data_train, axis=0)  # 标准化train_x, train_y = [], []  # 训练集for i in range(len(normalized_train_data) - time_step):if i % batch_size == 0:# 开始位置batch_index.append(i)# 一次取time_step行数据# x存储输入维度(不包括label) :X(最后一个不取)# 标准化(归一化)x = normalized_train_data[i:i + time_step, :n1]# y存储labely = normalized_train_data[i:i + time_step, n1, np.newaxis]# np.newaxis分别是在行或列上增加维度train_x.append(x.tolist())train_y.append(y.tolist())# 结束位置batch_index.append((len(normalized_train_data) - time_step))print('batch_index', batch_index)# print('train_x', train_x)# print('train_y', train_y)return batch_index, train_x, train_y# 获取测试集def get_test_data(time_step=20, test_begin=train_end_index+1):data_test = data[test_begin:]mean = np.mean(data_test, axis=0)std = np.std(data_test, axis=0)  # 矩阵标准差# 标准化(归一化)normalized_test_data = (data_test - np.mean(data_test, axis=0)) / np.std(data_test, axis=0)# " // "表示整数除法。有size个sampletest_size = (len(normalized_test_data) + time_step - 1) // time_stepprint('test_size$$$$$$$$$$$$$$', test_size)test_x, test_y = [], []for i in range(test_size - 1):x = normalized_test_data[i * time_step:(i + 1) * time_step, :n1]y = normalized_test_data[i * time_step:(i + 1) * time_step, n1]test_x.append(x.tolist())test_y.extend(y)test_x.append((normalized_test_data[(i + 1) * time_step:, :n1]).tolist())test_y.extend((normalized_test_data[(i + 1) * time_step:, n1]).tolist())return mean, std, test_x, test_y# ——————————————————定义神经网络变量——————————————————# 输入层、输出层权重、偏置、dropout参数# 随机产生 w,bweights = {'in': tf.Variable(tf.random_normal([input_size, rnn_unit])),'out': tf.Variable(tf.random_normal([rnn_unit, 1]))}biases = {'in': tf.Variable(tf.constant(0.1, shape=[rnn_unit, ])),'out': tf.Variable(tf.constant(0.1, shape=[1, ]))}keep_prob = tf.placeholder(tf.float32, name='keep_prob')  # dropout 防止过拟合# ——————————————————定义神经网络——————————————————def lstmCell():# basicLstm单元# tf.nn.rnn_cell.BasicLSTMCell(self, num_units, forget_bias=1.0,# tate_is_tuple=True, activation=None, reuse=None, name=None) # num_units:int类型,LSTM单元(一层神经网络)中的中神经元的个数,和前馈神经网络中隐含层神经元个数意思相同# forget_bias:float类型,偏置增加了忘记门。从CudnnLSTM训练的检查点(checkpoin)恢复时,必须手动设置为0.0。# state_is_tuple:如果为True,则接受和返回的状态是c_state和m_state的2-tuple;如果为False,则他们沿着列轴连接。后一种即将被弃用。# (LSTM会保留两个state,也就是主线的state(c_state),和分线的state(m_state),会包含在元组(tuple)里边# state_is_tuple=True就是判定生成的是否为一个元组)#   初始化的 c 和 a 都是zero_state 也就是都为list[]的zero,这是参数state_is_tuple的情况下#   初始state,全部为0,慢慢的累加记忆# activation:内部状态的激活函数。默认为tanh# reuse:布尔类型,描述是否在现有范围中重用变量。如果不为True,并且现有范围已经具有给定变量,则会引发错误。# name:String类型,层的名称。具有相同名称的层将共享权重,但为了避免错误,在这种情况下需要reuse=True.#basicLstm = tf.nn.rnn_cell.BasicLSTMCell(rnn_unit, forget_bias=1.0, state_is_tuple=True)# dropout 未使用drop = tf.nn.rnn_cell.DropoutWrapper(basicLstm, output_keep_prob=keep_prob)return basicLstmdef lstm(X):  # 参数:输入网络批次数目batch_size = tf.shape(X)[0]time_step = tf.shape(X)[1]w_in = weights['in']b_in = biases['in']# 忘记门(输入门)# 因为要进行矩阵乘法,所以reshape# 需要将tensor转成2维进行计算input = tf.reshape(X, [-1, input_size])input_rnn = tf.matmul(input, w_in) + b_in# 将tensor转成3维,计算后的结果作为忘记门的输入input_rnn = tf.reshape(input_rnn, [-1, time_step, rnn_unit])print('input_rnn', input_rnn)# 更新门# 构建多层的lstmcell = tf.nn.rnn_cell.MultiRNNCell([lstmCell() for i in range(lstm_layers)])init_state = cell.zero_state(batch_size, dtype=tf.float32)# 输出门w_out = weights['out']b_out = biases['out']# output_rnn是最后一层每个step的输出,final_states是每一层的最后那个step的输出output_rnn, final_states = tf.nn.dynamic_rnn(cell, input_rnn, initial_state=init_state, dtype=tf.float32)output = tf.reshape(output_rnn, [-1, rnn_unit])# 输出值,同时作为下一层输入门的输入pred = tf.matmul(output, w_out) + b_outreturn pred, final_states# ————————————————训练模型————————————————————def train_lstm(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):# 于是就有了tf.placeholder,# 我们每次可以将 一个minibatch传入到x = tf.placeholder(tf.float32,[None,32])上,# 下一次传入的x都替换掉上一次传入的x,# 这样就对于所有传入的minibatch x就只会产生一个op,# 不会产生其他多余的op,进而减少了graph的开销。X = tf.placeholder(tf.float32, shape=[None, time_step, input_size])Y = tf.placeholder(tf.float32, shape=[None, time_step, output_size])batch_index, train_x, train_y = get_train_data(batch_size, time_step, train_begin, train_end)# 用tf.variable_scope来定义重复利用,LSTM会经常用到with tf.variable_scope("sec_lstm"):pred, state_ = lstm(X) # pred输出值,state_是每一层的最后那个step的输出print('pred,state_', pred, state_)# 损失函数# [-1]——列表从后往前数第一列,即pred为预测值,Y为真实值(Label)#tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值loss = tf.reduce_mean(tf.square(tf.reshape(pred, [-1]) - tf.reshape(Y, [-1])))# 误差loss反向传播——均方误差损失# 本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。# Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳.train_op = tf.train.AdamOptimizer(lr).minimize(loss)saver = tf.train.Saver(tf.global_variables(), max_to_keep=15)with tf.Session() as sess:# 初始化sess.run(tf.global_variables_initializer())theloss = []# 迭代次数for i in range(200):for step in range(len(batch_index) - 1):# sess.run(b, feed_dict = replace_dict)state_, loss_ = sess.run([train_op, loss],feed_dict={X: train_x[batch_index[step]:batch_index[step + 1]],Y: train_y[batch_index[step]:batch_index[step + 1]],keep_prob: 0.5})#  使用feed_dict完成矩阵乘法 处理多输入#  feed_dict的作用是给使用placeholder创建出来的tensor赋值#  [batch_index[step]: batch_index[step + 1]]这个区间的X与Y#  keep_prob的意思是:留下的神经元的概率,如果keep_prob为0的话, 就是让所有的神经元都失活。print("Number of iterations:", i, " loss:", loss_)theloss.append(loss_)print("model_save: ", saver.save(sess, 'model_save2\\modle.ckpt'))print("The train has finished")return thelosstheloss = train_lstm()# 相对误差=(测量值-计算值)/计算值×100%test_y = np.array(test_y) * std[n1] + mean[n1]test_predict = np.array(test_predict) * std[n1] + mean[n1]acc = np.average(np.abs(test_predict - test_y[:len(test_predict)]) / test_y[:len(test_predict)])print("预测的相对误差:", acc)print(theloss)plt.figure()plt.plot(list(range(len(theloss))), theloss, color='b', )plt.xlabel('times', fontsize=14)plt.ylabel('loss valuet', fontsize=14)plt.title('loss-----blue', fontsize=10)plt.show()# 以折线图表示预测结果plt.figure()plt.plot(list(range(len(test_predict))), test_predict, color='b', )plt.plot(list(range(len(test_y))), test_y, color='r')plt.xlabel('time value/day', fontsize=14)plt.ylabel('close value/point', fontsize=14)plt.title('predict-----blue,real-----red', fontsize=10)plt.show()prediction()

需要完整代码工程的同学,请联系学长获取

3 实现效果

3.1 数据

采集股票数据
在这里插入图片描述
任选几支股票作为研究对象。

3.2 预测结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

项目运行展示

废话不多说, 先展示项目运行结果, 后面才进行技术讲解

对某公司的股票进行分析和预测 :
在这里插入图片描述

开发环境

如果只运行web项目,则只需安装如下包:

  • python 3.6.x

  • django >= 2.1.4 (或者使用conda安装最新版)

  • pandas >= 0.23.4 (或者使用conda安装最新版)

  • numpy >= 1.15.2 (或者使用conda安装最新版)
    *apscheduler = 2.1.2 (请用pip install apscheduler==2.1.2 安装,conda装的版本不兼容)
    如果需要训练模型或者使用模型来预测(注:需要保证本机拥有 NVIDIA GPU以及显卡驱动),则还需要安装:

  • tensorflow-gpu >= 1.10.0 (可以使用conda安装最新版。如用conda安装,cudatoolkit和cudnn会被自动安装)

  • cudatoolkit >= 9.0 (根据自己本机的显卡型号决定,请去NVIDIA官网查看)

  • cudnn >= 7.1.4 (版本与cudatoolkit9.0对应的,其他版本请去NVIDIA官网查看对应的cudatoolkit版本)

  • keras >= 2.2.2 (可以使用conda安装最新版)

  • matplotlib >= 2.2.2 (可以使用conda安装最新版)

数据获取

训练模型的数据,即10个公司的历史股票数据。获取国内上市公司历史股票数据,
并以csv格式保存下来。csv格式方便用pandas读取,输入到LSTM神经网络模型, 用于训练模型以及预测股票数据。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220592.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

升华 RabbitMQ:解锁一致性哈希交换机的奥秘【RabbitMQ 十】

欢迎来到我的博客,代码的世界里,每一行都是一个故事 升华 RabbitMQ:解锁一致性哈希交换机的奥秘【RabbitMQ 十】 前言第一:该插件需求为什么需要一种更智能的消息路由方式?一致性哈希的基本概念: 第二&…

很抱歉,Midjourney,但Leonardo AI的图像指导暂时还无人能及…至少目前是这样

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

【VScode】设置语言为中文

1、下载安装好vscode 2、此时可看到页面为英文,为方便使用可切换为中文 3、键盘按下 ctrlshiftP 4、在输入框内输入configure display language 5、选择中文,restart即可(首次会有install安装过程,等待安装成功后重启即可&am…

【Python炫酷系列】一闪一闪亮星星,漫天都是小星星(完整代码)

文章目录 环境需求完整代码详细分析系列文章环境需求 python3.11.4及以上版本PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.…

Python 爬虫之简单的爬虫(四)

爬取动态网页(下) 文章目录 爬取动态网页(下)前言一、大致内容二、基本思路三、代码编写1.引入库2.加载网页数据3.获取并保存4.保存文档 总结 前言 上篇主要讲了如何去爬取数据,这篇来讲一下如何在获取的同时将数据整…

利用canvas封装录像时间轴拖动(uniapp),封装上传uniapp插件市场

gitee项目地址,项目是一个空项目,其中包含了封装的插件,自己阅读,由于利用了canvas所以在使用中暂不支持.nvue,待优化; 项目也是借鉴了github上的一个项目,timeline-canvas,​​​​​​​ ​​​​​​​

【2.2操作系统】进程管理

目录 1.进程的基本概念2.进程的状态3.信号量与PV操作4.前趋图5.死锁6.银行家算法 1.进程的基本概念 🌟进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。它由程序块、进程控制块 (PCB) 和数据块三部分组成。 &#x1f…

Kubernetes 的用法和解析 -- 5

一.企业级镜像仓库Harbo 准备:另起一台新服务器,并配置docker yum源,安装docker 和 docker-compose 1.1 上传harbor安装包并安装 [rootharbor ~]# tar xf harbor-offline-installer-v2.5.3.tgz [rootharbor ~]# cp harbor.yml.tmpl harbor…

一篇文章带你了解各个程序员接单平台,让你选择不再迷茫!!!

相信现在很多程序员都已经走上了或者准备走上网上接单这条路,但是目前市面上的接单平台可谓五花八门,对于各个平台的优缺点,不同的程序员该如何选择适合自己的接单平台,你又是否了解呢? 接下来就让小编用一篇文章来为…

Axure动态面板的使用

一. 动态面板 Axure动态面板是Axure RP软件中的一个功能模块,用于创建交互式原型和模拟应用程序的动态效果。它可以模拟用户在应用程序中的操作流程,并展示不同状态之间的变化,提供更真实的用户体验。通过创建不同的状态和添加交互效果&…

springboot 学生信息管理

介绍 一个学生信息管理后台,适用于大作业,课设等 软件架构 springbootmybatisthymeleaf (前后端未分离) 安装教程 注:mysql数据库要8.0以上,,本地mysql新建一个名为 student 的空数据库&am…

ElasticSearch详细搭建以及常见错误high disk watermark [ES系列] - 第497篇

导读 历史文章(文章累计490) 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六…

每个开发人员都应该知道的六个生成式 AI 框架和工具

在快速发展的技术环境中,生成式人工智能是一股革命性的力量,它改变了开发人员处理复杂问题和创新的方式。本文深入探讨了生成式 AI 的世界,揭示了对每个开发人员都至关重要的框架和工具。 1. LangChain LangChain 由 Harrison Chase 开发并于…

2023 英特尔On技术创新大会直播 |让更多人了解AI魅力

2023 英特尔On技术创新大会直播 |让更多人了解AI魅力 前言:主要领域:人工智能:使用 OpenVINO™ 落地边缘端生成式 AIOpenVINO™学习总结: 新一代 AI PC计算平台:新一代至强平台:边云协同:先进技术&#xff…

基于JavaWeb+SSM+Vue微信小程序的移动学习平台系统的设计和实现

基于JavaWebSSMVue微信小程序的移动学习平台系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 第1章 绪论 1 1.1 课题背景 1 1.2 课题意义 1 1.3 研究内容 2 第2章 开发环…

自助式可视化开发,ETLCloud的集成之路

自助式可视化开发 自助式可视化开发是指利用可视化工具和平台,使非技术人员能够自主创建、定制和部署数据分析和应用程序的过程。 传统上,数据分析和应用程序开发需要专业的编程和开发技能。但是,自助式可视化开发工具的出现,使…

AI抠图软件哪个好用?推荐这三款抠图工具给你

AI抠图软件哪个好用?你是否听说过AI抠图这个操作呢?简单来说,抠图就是一种对图像进行处理的技术,它的目的是将图片中的某些区域去除或者替换。比如,如果你有一张背景很杂乱的图片,你想把背景去掉&#xff0…

四、Spring IoC实践和应用(基于XML配置方式组件管理)

本章概要 基于XML配置方式组件管理 实验一: 组件(Bean)信息声明配置(IoC)实验二: 组件(Bean)依赖注入配置(DI)实验三: IoC 容器创建和使用实验四…

python:import自定义包或py文件时,pyCharm正常但终端运行提示ModuleNotFoundError: No module named错误

问题 示例项目引用items.py,项目在pycharm开发工具中可以正常运行,但使用终端直接运行会报错ModuleNotFoundError: No module named。如下图。 原因 pycharm开发工具运行正常,说明目录和引用模块是没问题的。问题在于终端的运行环境只搜索文…

armday1

1到一百的累加