实力强的大模型都有哪些超能力?

实力强的大模型都有哪些超能力?
前几日,人工智能研究公司OpenAI CEO山姆·奥特曼(Sam Altman)在谈及人工智能这项技术的潜力以及人们对它的担忧时,曾表示“AI发展速度快得吓人,就像停不下来的龙卷风。”可见,人工智能正在以它超前的速度改变世界。
在经历了年初人工智能之大模型风口的狂热之后,截止2023年10月,我国拥有10亿参数规模以上大模型的厂商及高校院所达到了254家,这其中既有通用大模型(AGI),也有垂直大模型。换句话说,就是每隔几天,国内就会官宣一个新的大模型。
但越来越多的从业者会发现,大模型的智能化与商业化落地其实并没有那么快速。
随着大模型技术的演变和业务的落地推进,会像大浪淘沙般将一些参与主体过滤出去,最终,只有手握硬核技术实力和资源的企业才能活下去。
那么,现阶段国内如此多的大模型,都有哪些类型?哪家实力最强呢?

通用大模型与垂直大模型,哪个有前景

据称,国内大模型已近80个,这其中包括通用大模型和垂直大模型(也叫专用大模型)。它们二者相比,孰高孰低呢?其实二者如果从应用角度出发考虑的话,都具有各自的特点。
通用大模型(AGI)是指适用于多个领域或行业的大模型,例如自然语言处理领域的预训练模型、图像识别领域的预训练模型等等。
这种大模型具有更广泛的的应用范围,可以在多个领域内发挥作用。我们常常听到的人工智能公司OpenAI开发的ChatGPT、阿里的通义千问、百度的文心一言等都是通用大模型的代表。
在这里插入图片描述
而垂直大模型则是针对某个特定的领域或行业研发的大模型,例如医疗领域的大模型、金融领域的大模型、物流领域的大模型等。
就比如物流场景涉及单证(物流活动中进行物流承运而出具的合法效力文件,比如物流承运合同单证等)多、格式不统一等问题,物流大模型可以对其进行快速、准确的标准化识别,提供结构化数据并做好纠错、补全等操作,保障后续运单分单、履约配送等环节的质量和效率。
这种大模型在特定领域内具有更高的专业性和针对性,能够更好地解决该领域内的特定问题,因此垂直大模型也叫专用大模型。
可以说每个跟每个之间非常难以比较,所以也很难说哪个最有前途。

实力强的大模型拥有哪些超能力

虽然无法使用一个定律来比较出通用大模型与垂直大模型的优劣,但实力强的大模型拥有的“超能力”总是具有共性的,也具有更广阔的发展潜力。

//1.超大算力

相较于一般AI应用,大模型应用的训练及推理需要更强的算力支持,可以说算力决定了一个通用大模型的底线。
国内提供云服务的阿里云、腾讯云自身就拥有超大算力,这是他们研发的大模型所具有的最大竞争力。
在这里插入图片描述

//2.数据量大

训练大模型需要更大的数据量,更好的数据质量,更多样性的数据源。因此在大家算力都够、大模型架构差不多的情况下,谁若再加上数据量多、数据质量高的优势,便会相应地提升大模型的质量,大模型落地应用的效果也就会越好。

//3.是开源大模型

还有一个考虑的因素是是否是开源大模型。开源由于源代码公开,可以根据用户的需求随时修改和定制开发,且一般是免费的(免费使用降低了大模型的使用门槛,例如国外的ChatGPT和国内的文心一言的爆火恰就是因为它使用便捷,人人只需注册即可体验),可以让更多的开发人员和用户参与,提高大模型的质量和稳定性。开源的大模型代表有阿里的通义千问。
而闭源大模型则由开发公司维护,虽然可以控制大模型的质量和稳定性,但如果不能不断地提升自己的模型能力,不能保持长期不可动摇的领先性能,有可能会被开源取代。所以属于闭源的大模型ChatGPT、文心一言等需要保持强劲的性能。

//4.是否拥有API接口

开放服务能力是评价大模型能力的重要要素之一,大模型开放了API接口可以帮助其提升开放性,改善对外服务能力。
API接口开放对于专业人员来说必不可少。科研人员可以利用其做大量的测试。个人创业者也可以利用接口将其运用到实际的业务中。

相信在不久的将来,随着大模型面临的技术和成本问题被解决,相关的企业级应用或消费型应用落地的节奏将会加快。这样也会凸显出一批批强大的大模型厂商和应用型产品,而这些厂商和产品很大可能出自于今天这些已崭露头角的大模型产品。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222348.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试:最强面试题整理出炉附答案,一点点小总结,建议收藏

一、Web自动化测试 1.Selenium中hidden或者是display = none的元素是否可以定位到? 不能,可以写JavaScript将标签中的hidden先改为0,再定位元素 2.Selenium中如何保证操作元素的成功率?也就是说如何保证我点击的元素一定是可以点…

CMU\谷歌等最新研究综述:面向通用机器人的基础模型

构建能够在任何环境中无缝操作、使用各种技能处理不同物体和完成多样化任务的通用机器人,一直是人工智能领域的长期目标。然而,不幸的是,大多数现有的机器人系统受到限制——它们被设计用于特定任务、在特定数据集上进行训练,并在…

deCasteljau 递推

递推函数 P i r ( t ) ( 1 − t ) P i r − 1 ( t ) t P i 1 r − 1 ( t ) , \begin{equation} \bm{P}_{i}^r (t) (1-t) \bm{P}_{i}^{r-1} (t) t \bm{P}_{i1}^{r-1} (t), \end{equation} Pir​(t)(1−t)Pir−1​(t)tPi1r−1​(t),​​ …

在ClickHouse数据库中启用预测功能

在这篇博文中,我们将介绍如何将机器学习支持的预测功能与 ClickHouse 数据库集成。ClickHouse 是一个快速、开源、面向列的 SQL 数据库,对于数据分析和实时分析非常有用。该项目由 ClickHouse, Inc. 维护和支持。我们将探索它在需要数据准备以…

Java对接腾讯多人音视频房间回调接口示例

在前面我们已经对接好了腾讯多人音视频房间相关内容:Java对接腾讯多人音视频房间示例 为了完善业务逻辑,我们还需要对接它的一些回调接口 官方文档地址 主要就下面这些 这里因为比较简单直接上代码 里面有些工具类和上一章一样这里就没贴,需要…

【高效开发工具系列】eclipse部署web项目

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

15张超级有用的电商模版

电商即电子商务(Electronic Commerce) ,是利用计算机技术、网络技术和远程通信技术,实现电子化、数字化和网络化的整个商务过程。本专题包含电商运营策略、电商平台底层逻辑、营销流程设计等模板内容。 如果你是一个电商小白,你需要以下的电…

大型医院PACS系统源码,影像存储与传输系统源码,支持多种图像处理及三维重建功能

PACS系统是医院影像科室中应用的一种系统,主要用于获取、传输、存档和处理医学影像。它通过各种接口,如模拟、DICOM和网络,以数字化的方式将各种医学影像,如核磁共振、CT扫描、超声波等保存起来,并在需要时能够快速调取…

Enge问题解决教程

目录 解决问题的一般步骤: 针对"Enge问题"的具体建议: 以下是一些普遍适用的解决问题的方法: 以下是一些更深入的Enge浏览器问题和解决办法: 浏览器性能问题: 浏览器插件与网站冲突: 浏览…

新型智慧视频监控系统:基于TSINGSEE青犀边缘计算AI视频识别技术的应用

边缘计算AI智能识别技术在视频监控领域的应用有很多。这项技术结合了边缘计算和人工智能技术,通过在摄像头或网关设备上运行AI算法,可以在现场实时处理和分析视频数据,从而实现智能识别和分析。目前来说,边缘计算AI视频智能技术可…

Leetcode 45 跳跃游戏 II

题意理解: 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。 还是从初始坐标i0的位置到达最后一个元素,但是问题不是能不能跳到,而是最少几步能跳到最后一个元素。 目标&…

Java|IDEA 中添加编译参数 --add-exports

方法1 File > Settings > Build, Execution, Deployment > Compiler > Java Compiler > Javac Options > Override compiler parameters per-module 点击: 点击OK 双击Compliation options,输入后回车: 方法2 找到出错…

阻塞 IO(BIO)

文章目录 阻塞 IO(BIO)模型等待队列头init_waitqueue_headDECLARE_WAIT_QUEUE_HEAD 等待队列项使用方法驱动程序应用程序模块使用参考 阻塞 IO(BIO) 模型 等待队列是内核实现阻塞和唤醒的内核机制。 等待队列以循环链表为基础结构,链表头和链表项分别为等待队列头和…

27、ResNet50处理STEW数据集,用于情感三分类+全备的代码

1、数据介绍 IEEE-Datasets-STEW:SIMULTANEOUS TASK EEG WORKLOAD DATASET : 该数据集由48名受试者的原始EEG数据组成,他们参加了利用SIMKAP多任务测试进行的多任务工作负荷实验。受试者在休息时的大脑活动也在测试前被记录下来,也包括在其…

【SpringBoot】之Security进阶使用

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《SpringBoot开发之Security系列》。&#x1f3af…

变分自动编码器【03/3】:使用 Docker 和 Bash 脚本进行超参数调整

一、说明 在深入研究第 1 部分中的介绍和实现,并在第 2 部分中探索训练过程之后,我们现在将重点转向在第 3 部分中通过超参数调整来优化模型的性能。要访问本系列的完整代码,请访问我们的 GitHub 存储库在GitHub - asokraju/ImageAutoEncoder…

直播电商“去网红化”势在必行,AI数字人打造品牌专属IP

近年来,网红直播带货“翻车”事件频发,给品牌商带来了信任危机和负面口碑的困扰,严重损害了企业的声誉。这证明强大的个人IP,对于吸引粉丝和流量确实能起到巨大的好处,堪称“金牌销售”,但太过强势的个人IP属性也会给企业带来一定风险&#x…

计算机网络:应用层

0 本节主要内容 问题描述 解决思路 1 问题描述 不同的网络服务: DNS:用来把人们使用的机器名字(域名)转换为 IP 地址;DHCP:允许一台计算机加入网络和获取 IP 地址,而不用手工配置&#xff1…

回顾丨2023 SpeechHome 第三届语音技术研讨会

下面是整体会议的内容回顾: 18日线上直播回顾 18日上午9:30,AISHELL & SpeechHome CEO卜辉宣布研讨会开始,并简要介绍本次研讨会的筹备情况以及报告内容。随后,CCF语音对话与听觉专委会副主任、清华大学教授郑方&#xff0c…

Spring AOP入门指南:轻松掌握面向切面编程的基础知识

面向切面编程 1,AOP简介1.1 什么是AOP?1.2 AOP作用1.3 AOP核心概念 2,AOP入门案例2.1 需求分析2.2 思路分析2.3 环境准备2.4 AOP实现步骤步骤1:添加依赖步骤2:定义接口与实现类步骤3:定义通知类和通知步骤4:定义切入点步骤5:制作切面步骤6:将通知类配给…