Python并行计算和分布式任务全面指南

55886c6b749e5d6e3897ea42d9bd97b6.jpeg

更多Python学习内容:ipengtao.com

大家好,我是彭涛,今天为大家分享 Python并行计算和分布式任务全面指南。全文2900字,阅读大约8分钟

并发编程是现代软件开发中不可或缺的一部分,它允许程序同时执行多个任务,提高了性能和效率。Python作为一种强大的编程语言,在并发领域有丰富的工具和库,本文将深入探讨如何使用Python进行并行计算和分布式任务处理,并提供详细的示例代码。

并行计算

使用concurrent.futures

Python的concurrent.futures库提供了一个简单而强大的接口,用于执行并行计算任务。

以下是一个示例,演示如何使用ThreadPoolExecutor来并行计算一组任务:

import concurrent.futuresdef compute_square(number):return number ** 2if __name__ == "__main__":numbers = [1, 2, 3, 4, 5]with concurrent.futures.ThreadPoolExecutor() as executor:results = list(executor.map(compute_square, numbers))print(results)

使用multiprocessing

multiprocessing库允许在多个进程中执行任务,适用于CPU密集型工作。

以下是一个示例,演示如何使用Pool来并行计算:

import multiprocessingdef compute_cube(number):return number ** 3if __name__ == "__main__":numbers = [1, 2, 3, 4, 5]with multiprocessing.Pool() as pool:results = pool.map(compute_cube, numbers)print(results)

分布式任务处理

使用Celery

Celery是一个流行的Python库,用于分布式任务处理。它允许将任务分发给多个工作进程或远程工作者。

以下是一个示例,演示如何使用Celery来执行分布式任务:

from celery import Celeryapp = Celery('myapp', broker='pyamqp://guest@localhost//')@app.task
def add(x, y):return x + yif __name__ == "__main__":result = add.delay(4, 5)print(result.get())

使用Dask

Dask是一个用于并行和分布式计算的强大库,可以处理比内存更大的数据集。

以下是一个示例,演示如何使用Dask来执行分布式计算:

import dask
import dask.array as dax = da.ones((1000, 1000), chunks=(100, 100))
result = (x + x.T).mean()
print(result.compute())

并行计算的高级应用

使用asyncio进行异步编程

除了concurrent.futuresmultiprocessing,Python还提供了asyncio库,用于异步编程。

以下是一个示例,演示如何使用asyncio来执行并行异步任务:

import asyncioasync def compute_square(number):return number ** 2async def main():numbers = [1, 2, 3, 4, 5]tasks = [compute_square(number) for number in numbers]results = await asyncio.gather(*tasks)print(results)if __name__ == "__main__":asyncio.run(main())

使用concurrent.futuresProcessPoolExecutor

如果需要利用多核处理器执行CPU密集型任务,concurrent.futures还提供了ProcessPoolExecutor,它使用多进程来执行任务。

以下是一个示例:

import concurrent.futuresdef compute_fibonacci(n):if n <= 1:return nelse:return compute_fibonacci(n - 1) + compute_fibonacci(n - 2)if __name__ == "__main__":numbers = [35, 36, 37, 38, 39]with concurrent.futures.ProcessPoolExecutor() as executor:results = list(executor.map(compute_fibonacci, numbers))print(results)

分布式任务处理的高级应用

使用Apache Spark

Apache Spark是一个分布式计算框架,适用于大规模数据处理。

以下是一个示例,演示如何使用PySpark来执行分布式计算:

from pyspark import SparkContextsc = SparkContext("local", "My App")data = [1, 2, 3, 4, 5]
rdd = sc.parallelize(data)
result = rdd.map(lambda x: x * 2).collect()
print(result)

使用Ray

Ray是一个分布式应用程序的快速开发框架,适用于构建分布式任务处理系统。

以下是一个示例,演示如何使用Ray来执行分布式任务:

import rayray.init()@ray.remote
def remote_function():return 42if __name__ == "__main__":results = ray.get([remote_function.remote() for _ in range(10)])print(results)

总结

本文进一步深入了解了Python中的并发编程和分布式任务处理,包括asyncioProcessPoolExecutorPySparkRay等工具和库的高级应用。这些技术可以帮助大家更好地处理大规模数据和高性能计算,提高程序的效率和性能。

并发编程和分布式任务处理是现代应用程序开发中不可或缺的一部分,能够有效地利用计算资源,处理大规模工作负载。希望本文的示例和解释有助于大家更深入地了解Python中的并发编程和分布式计算,以应对各种复杂任务和应用场景。

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!

更多Python学习内容:ipengtao.com

干货笔记整理

  100个爬虫常见问题.pdf ,太全了!

Python 自动化运维 100个常见问题.pdf

Python Web 开发常见的100个问题.pdf

124个Python案例,完整源代码!

PYTHON 3.10中文版官方文档

耗时三个月整理的《Python之路2.0.pdf》开放下载

最经典的编程教材《Think Python》开源中文版.PDF下载

7fd9fe84954e1645a46c16f37199f4f8.png

点击“阅读原文”,获取更多学习内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223101.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CloudPulse:一款针对AWS云环境的SSL证书搜索与分析引擎

关于CloudPulse CloudPulse是一款针对AWS云环境的SSL证书搜索与分析引擎&#xff0c;广大研究人员可以使用该工具简化并增强针对SSL证书数据的检索和分析过程。 在网络侦查阶段&#xff0c;我们往往需要收集与目标相关的信息&#xff0c;并为目标创建一个专用文档&#xff0c…

【Linux】进程周边007之进程控制

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.进程创建 2.进程终止 2.…

Java设计模式-原型模式

目录 一、克隆羊问题 二、传统方式解决 三、基本介绍 四、浅拷贝和深拷贝 &#xff08;一&#xff09;浅拷贝介绍 &#xff08;二&#xff09;深拷贝 五、原型模式深拷贝 &#xff08;一&#xff09;重写clone方法 &#xff08;二&#xff09;对象序列化 六、注意事项…

CV算法面试题学习

本文记录了CV算法题的学习。 CV算法面试题学习 点在多边形内&#xff08;point in polygon&#xff09;高斯滤波器 点在多边形内&#xff08;point in polygon&#xff09; 参考自文章1&#xff0c;其提供的代码没有考虑一些特殊情况&#xff0c;所以做了改进。 做法&#xff…

k8s 中部署Jenkins

创建namespace apiVersion: v1 kind: Namespace metadata:name: jenkins创建pv以及pvc kind: PersistentVolume apiVersion: v1 metadata:name: jenkins-pv-volumenamespace: jenkinslabels:type: localapp: jenkins spec:#storageClassName: manualcapacity:storage: 5Giacc…

鸿蒙原生应用再添新丁!喜马拉雅入局鸿蒙

鸿蒙原生应用再添新丁&#xff01;喜马拉雅入局鸿蒙 来自 HarmonyOS 微博12月20日消息&#xff0c; #喜马拉雅正式完成鸿蒙原生应用版本适配#&#xff0c;作为音频业巨头的喜马拉雅 &#xff0c;将基于#HarmonyOS NEXT#创造更丰富、更智慧的全场景“声音宇宙”&#xff01;#鸿…

Spring security之授权

前言 本篇为大家带来Spring security的授权&#xff0c;首先要理解一些概念&#xff0c;有关于&#xff1a;权限、角色、安全上下文、访问控制表达式、方法级安全性、访问决策管理器 一.授权的基本介绍 Spring Security 中的授权分为两种类型&#xff1a; 基于角色的授权&…

mathtype公式章节编号

1. word每章标题后插入章节符 如果插入后显示章节符&#xff0c;需要进行隐藏 开始->样式->MTEquationSection->修改样式->字体&#xff0c;勾选隐藏 2. 设置mathtype公式编号格式 插入编号->格式化->设置格式

Ansible自动化工具之Playbook剧本编写

目录 Playbook的组成部分 实例模版 切换用户 指定声明用户 声明和引用变量&#xff0c;以及外部传参变量 playbook的条件判断 ​编辑 习题 ​编辑 ansible-playbook的循环 item的循环 ​编辑 list循环 ​编辑 together的循环&#xff08;列表对应的列&#xff0…

【Pytorch】学习记录分享6——PyTorch经典网络 ResNet与手写体识别

【Pytorch】学习记录分享5——PyTorch经典网络 ResNet 1. ResNet &#xff08;残差网络&#xff09;基础知识2. 感受野3. 手写体数字识别3. 0 数据集&#xff08;训练与测试集&#xff09;3. 1 数据加载3. 2 函数实现&#xff1a;3. 3 训练及其测试&#xff1a; 1. ResNet &…

数据库编程大赛:一条SQL计算扑克牌24点

你是否在寻找一个平台&#xff0c;能让你展示你的SQL技能&#xff0c;与同行们一较高下&#xff1f;你是否渴望在实战中提升你的SQL水平&#xff0c;开阔你的技术视野&#xff1f;如果你对这些都感兴趣&#xff0c;那么本次由NineData主办的《数据库编程大赛》&#xff0c;将是…

IAR安装注册

IAR安装注册 一、 概述 此文记录IAR 开发工具 EWARM-CD-8321-18631 安装注册过程&#xff0c;以及工程编译、调试、烧录下载方法。 二、安装 安装文件: 选择安装 IAR: 一路 NEXT 遇到对话框点击 ”是” 即可安装完成, 图标如下: 三、 注册 先断开网络链接, 不能链接…

Shell编程从入门到实战

Shell 概述 &#xff08;1&#xff09;Linux 提供的 Shell 解析器有 [rootflinkTenxun ~]# cat /etc/shells&#xff08;2&#xff09;bash 和 sh 的关系 [rootflinkTenxun bin]# ll | grep bash&#xff08;3&#xff09;Centos 默认的解析器是 bash [rootflinkTenxun bin]…

【JavaWeb学习笔记】14 - 三大组件其二 Listener Filter

项目代码 https://github.com/yinhai1114/JavaWeb_LearningCode/tree/main/listener https://github.com/yinhai1114/JavaWeb_LearningCode/tree/main/filter API文档JAVA_EE_api_中英文对照版 Listener 一、监听器Listener 1. Listener监听器它是JavaWeb的三大组件之一。 J…

【数据结构】栈的使用|模拟实现|应用|栈与虚拟机栈和栈帧的区别

目录 一、栈(Stack) 1.1 概念 1.2 栈的使用 1.3 栈的模拟实现 1.4 栈的应用场景 1. 改变元素的序列 2. 将递归转化为循环 3. 括号匹配 4. 逆波兰表达式求值 5. 出栈入栈次序匹配 6. 最小栈 1.5 概念区分 一、栈(Stack) 1.1 概念 栈&#xff1a;一种特殊的线性表&…

【【迭代16次的CORDIC算法-verilog实现】】

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …

十大经典排序算法(个人总结C语言版)

文章目录 一、前言二、对比1.排序算法相关概念1.1 时间复杂度1.2 空间复杂度1.3 排序方式1.4 稳定度 2.表格比较3.算法推荐3.1 小规模数据3.2 中等规模数据3.3 大规模数据3.4 特殊需求 三、排序算法1.冒泡排序&#xff08;Bubble Sort&#xff09;1.1 简介1.2 示例代码&#xf…

【模式识别】探秘判别奥秘:Fisher线性判别算法的解密与实战

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《模式之谜 | 数据奇迹解码》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 目录 &#x1f30c;1 初识模式识…

C++结合OpenCV:掌握图像基础与处理

本文详细介绍了使用 OpenCV4 进行图像处理的基础知识和操作。内容包括图像的基础概念、色彩空间理解、以及如何在 C 中进行图像读取、显示和基础操作。 1.图像的基本概念与术语 图像表示 在计算机视觉中&#xff0c;图像通常表示为一个二维或三维的数组。二维数组表示灰度图像&…

VS(Visual Studio)更改文件编码

vs默认编码是GB2312,更改为UTF-8 工具->自定义