mvtec3d

以bagel为例,其中有calibration、

bagel			# 百吉圈(硬面包)calibrationcamera_parameters.jsontestcombinedgt	# 缺陷部位的分割剪影pngrgb	# 原图pngxyz	# tiffcontamination	# 污染物同上crack同上good同上		hole同上		traingoodrgbxyzvalidationgood同trainclass_ids.json

camera_parameters.json

{"camera_type": "area_scan_division","focus": 0.0103431,"kappa": -2205.03,"sx": 3.74983e-06,"sy": 3.75e-06,"cx": 252.046,"cy": 450.07,"image_width": 800,"image_height": 800
}

class_ids.json如下
在这里插入图片描述
其余类别

cable_gland	缆线接头,缺陷:弯曲、末端破裂或者头部凹陷、洞、螺纹损坏
carrot	胡萝卜,缺陷:污染、裂纹、割痕、洞
cookie	饼干
dowel	暗榫(识图的话应该叫塑料膨胀管)
foam	鸡蛋托盘
peach
potato
rope	绞绳,缺陷:污染、裂痕、蓬松
tire

顺便记一下在gpt那问到的处理tiff的代码,可能用到?

import tifffile as tiff# Attempt to read the TIFF file using tifffile
try:tiff_data = tiff.imread(file_path)# Display the shape of the array to understand its dimensionstiff_data_shape = tiff_data.shape
except Exception as e:tiff_data_shape = str(e)tiff_data_shape
(800, 800, 3)

要从这种类型的图像中生成点云,我们可以遵循以下步骤:

将图像转换为灰度图。 遍历每个像素,使用其 x 和 y 坐标以及灰度值(作为 z 坐标)来生成点云。
我将进行这些转换并提供一个点云数据的示例。 ​​

# Convert the image to grayscale
gray_image = np.mean(tiff_data, axis=2)# Generate point cloud data 
points = [] 
for y in range(gray_image.shape[0]):for x in range(gray_image.shape[1]):z = gray_image[y][x]  # Grayscale value as heightpoints.append([x, y, z])# Convert to numpy array for better handling 
point_cloud = np.array(points)# Show the shape of the point cloud and a small sample of the data 
point_cloud_shape = point_cloud.shape 
point_cloud_sample = point_cloud[:5]  # First 5 points as a samplepoint_cloud_shape, point_cloud_sample 
((640000, 3),  
array([[0. , 0.        , 0.14262693],[1.        , 0.        , 0.14268805],[2.        , 0.        , 0.14277673],[3.        , 0.        , 0.14286469],[4.        , 0.        , 0.14295126]]))

成功将图像转换为点云数据。生成的点云由 640,000 个点组成,每个点有三个坐标:x, y, 和 z。
这些坐标中,x 和 y 是像素的位置,而 z 是基于灰度值的高度(或深度)。

现在你可以使用 CloudCompare、MeshLab 或其他点云可视化工具来查看和分析这些数据。如果你选择使用 Python 进行可视化,可以使用 matplotlib、plotly 或类似库来创建三维散点图。

dl

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225188.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Gitlab】CICD流水线自动化部署教程

第一步,准备 GitLab 仓库 这个不用多说,得先保证你的项目已经托管在一个 GitLab 仓库中。 第二步,定义 .gitlab-ci.yml 文件 在你的项目根目录中创建一个 .gitlab-ci.yml 文件。这个文件将定义所有 CI/CD 的工作流程,包括构建、测…

QT 输入框输入限制 正则表达式限制 整理

在使用 输入数值时,经常遇到限制其范围的需要,比如角太阳高度角范围为[-90,90],经度值范围[-180,180],方位角范围[0,360]。Qt提供了QIntValidator和QDoubleValidator可以限定数值输入范围,如使用QIntValidator限制整数…

数模学习day01-层次分析法模型

已经一个多月没有更新过文章了,为了保住那绩点的意思微弱的优势,直接开摆,开始复习专业课和公共课考试了,结果虽然有遗憾但是还是算不错,至少没有掉到3.xx嘿嘿。 然后现在就要开始学习数学建模和算法同步了。接下来的文…

GPU性能实时监测的实用工具

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

python作业题百度网盘,python作业答案怎么查

大家好,小编来为大家解答以下问题,python作业题百度网盘,python作业答案怎么查,今天让我们一起来看看吧! 1 以下代码的输出结果为: alist [1, 2, 3, 4] print(alist.reverse()) print(alist) A.[4, 3, 2, …

苏州科技大学计算机817程序设计(java) 学习笔记

之前备考苏州科技大学计算机(专业课:817程序设计(java))。 学习Java和算法相关内容,现将笔记及资料统一整理归纳移至这里。 部分内容不太完善,欢迎提议。 目录 考情分析 考卷题型 刷题攻略…

7.2 uvm_resource_db in UVM

uvm_resource_db是一个类型参数化 type-parameterized的类,它是资源数据库顶部的一个方便层(convenience layer)。这个便利层简化了对低级数据库的访问,并且没有添加新功能。因此,uvm_resource_db不是从uvm_resource类派生的。以下uvm_resour…

怎么下载landsat 8影像并在ArcGIS Pro中进行波段组合

Landsat 8(前身为Landsat数据连续性任务,或 LDCM)于2013年2月11日由 Atlas-V火箭从加利福尼亚州范登堡空军基地发射升空,这里为大家介绍一下该数据的下载的方法,希望能对你有所帮助。 注册账号 如果之前已经注册过的…

如何通过内网穿透实现远程访问本地Linux SVN服务

文章目录 前言1. Ubuntu安装SVN服务2. 修改配置文件2.1 修改svnserve.conf文件2.2 修改passwd文件2.3 修改authz文件 3. 启动svn服务4. 内网穿透4.1 安装cpolar内网穿透4.2 创建隧道映射本地端口 5. 测试公网访问6. 配置固定公网TCP端口地址6.1 保留一个固定的公网TCP端口地址6…

深信服技术认证“SCCA-C”划重点:云计算基础

为帮助大家更加系统化地学习云计算知识,高效通过云计算工程师认证,深信服特推出“SCCA-C认证备考秘笈”,共十期内容。“考试重点”内容框架,帮助大家快速get重点知识。 划重点来啦 *点击图片放大展示 深信服云计算认证&#xff08…

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-BiLSTM麻雀算法优化…

技术探秘:在RISC Zero中验证FHE——RISC Zero应用的DevOps(2)

1. 引言 前序博客: 技术探秘:在RISC Zero中验证FHE——由隐藏到证明:FHE验证的ZK路径(1) 技术探秘:在RISC Zero中验证FHE——由隐藏到证明:FHE验证的ZK路径(1) 中&…

C单片机数据类型

C语言数据类型 关键字位数表示范围stdint关键字ST关键字unsigned char80 ~ 255uint8_tu8char8-128 ~ 127int8_ts8unsigned short160 ~ 65535uint16_tu16short16-32768 ~ 32767int16_ts16unsigned int320 ~ 4294967295uint32_tu32int32-2147483648 ~ 2147483647int32_ts32unsig…

根据DCT特征训练CNN

记录一次改代码的挣扎经历: 看了几篇关于DCT频域的深度模型文献,尤其是21年FcaNet:基于DCT 的attention model,咱就是说想试试将我模型的输入改为分组的DCT系数,然后就开始下面的波折了。 第一次尝试&#xf…

k8s面试之——简述网络模型

kubernetes网络模型是kubernetes集群中管理容器网络通信的一种机制,用于实现pod间、pod与外部网络间的通信和互联,并提供了多种网络插件和配置选项来满足不同应用场景下的需求。kubernetes网络模型可以分为一下几个部分: 1. pod网络模型 在…

傻瓜式教学Docker 使用docker compose部署 php nginx mysql

首先你可以准备这个三个服务,也可以在docker compose 文件中 直接拉去指定镜像,这里演示的是镜像服务已经在本地安装好了,提供如下: PHP # 设置基础镜像 FROM php:8.2-fpm# install dependencies RUN apt-get update && apt-get install -y \vim \libzip-dev \libpng…

【docker笔记】docker理论及安装

前言 本笔记来源于尚硅谷docker教学视频 视频地址:https://www.bilibili.com/video/BV1gr4y1U7CY/?spm_id_from333.337.search-card.all.click 纯手打笔记,来之不易,感谢支持~ Docker简介 docker为什么会出现 想象一下:一个应用…

【数据结构初阶】二叉树(2)

二叉树顺序结构 1.二叉树的顺序结构及实现1.1二叉树的顺序结构 1.2 堆的概念及结构1.3 堆的实现1.3.1向上调整1.3.2向下调整1.3.3交换函数1.3.4打印1.3.5初始化1.3.6销毁1.3.7插入1.3.8删除1.3.9获得堆顶元素1.3.10判断是否为空1.3.6 堆的代码实现 1.3.2堆的创建1.3.3 建堆时间…

Tg5032smn:高稳定性105℃高温

TG5032SMN是一款频率范围10MHz ~ 54MHz,具有高稳定的TCXO晶振,可与CMOS或限幅正弦输出。外部尺寸5.0 3.2 1.45mm,超小型,质地轻。该系列晶振的额定工作范围-40℃~﹢105C内可高稳定性工作,使得信号频率的误差很小。TG5032SMN与其他…

在k8s中将gitlab-runner的运行pod调度到指定节点

本篇和前面的 基于helm的方式在k8s集群中部署gitlab 具有很强的关联性,因此如果有不明白的地方可以查看往期分享: 基于helm的方式在k8s集群中部署gitlab - 部署基于helm的方式在k8s集群中部署gitlab - 备份恢复基于helm的方式在k8s集群中部署gitlab - 升…