Python——yolov8识别车牌2.0

目录

一、前言

二、关于项目UI

2.1、修改界面内容的文本

2.2、修改界面的图标和图片

 三、项目修改地方

 四、其他配置问题


一、前言

  • 因为后续有许多兄弟说摄像头卡顿,我在之前那个MATS上面改一下就可以了,MAST项目:基于YOLOv8的多端车流检测系统(用于毕设+开源)-CSDN博客
  • 其实这个直接用yolov8的官方api就可以了,然后在画标签那里修改一下代码,就可以了
  • 卡顿的原版项目:(这里有配置方法)Python——基于YOLOV8的车牌识别(源码+教程)_车牌识别python代码-CSDN博客

代码包:

YOLOv8-license-plate-recognize-2.zip - 蓝奏云文件大小:42.0 M|icon-default.png?t=N7T8https://wwwf.lanzout.com/inCTH1izjrqh配置方法和原项目差不多~如果有配置问题,可以看看下面的内容

二、关于项目UI

因为MATS那个基础项目,就没有用ui文件,所以这个也没有UI文件了

在修改pyside6时,最好有一些这方面的基础

2.1、修改界面内容的文本

可以自行修改ui文件夹里面的main_window.py

2.2、修改界面的图标和图片

1、替换或修改YOLOv8-license-plate-recognize-2\ui\img中的图片(img那个文件夹里面)

2、把resources.qrc中的对应映射进行修改,如果你是添加了文件,就按照那个格式新增就好了

3、使用命令——重新编译为资源文件:pyside6-rcc resources.qrc -o resources_rc.py


重新启动程序,查看是否更新成功

 三、项目修改地方

其实,很多东西,原项目都写好了,只需要在画标签那里,自定义一下就好了,把对应的坐标和图片丢给lprr就行了

关于lprr本人一窍不通,只是调用了他的api,然后他可以返回一个车牌的结果

画标签的代码:(写得丑陋,请大佬们指正,Python没有常用,常写)

 在yolo.py的333行

    # 画标签到图像上def creat_labels(self, detections, img_box, model):# 画车牌 draw a license platelabel_plate = []xy_xy_list = detections.xyxy.squeeze()class_id_list = detections.class_id.squeeze().tolist()xyxy = []# 车牌获取for i in range(len(xy_xy_list)):if isinstance(class_id_list, int) and class_id_list != 0:continue# 如果长度为1,则是intif isinstance(class_id_list, int) and class_id_list == 0:xy_xy_filter = xy_xy_listxyxy.append(xy_xy_filter)plate = de_lpr(xy_xy_filter, img_box)plate = np.array(plate)car_number = ""for m in range(0, plate.shape[1]):# 将字符转换成车牌号码b = CHARS[plate[0][m]]car_number += blabel_plate.append(car_number)continue# 长度不为1if class_id_list[i] != 0:   # 只选择是车牌的目标continuexy_xy_filter = xy_xy_list[i]xyxy.append(xy_xy_filter)plate = de_lpr(xy_xy_filter, img_box)plate = np.array(plate)car_number = ""for m in range(0, plate.shape[1]):# 将字符转换成车牌号码b = CHARS[plate[0][m]]car_number += blabel_plate.append(car_number)# 修改坐标数组detections.xyxy = np.array(xyxy)# 要画出来的信息labels_draw = label_plate# labels_draw = [#     f"ID: {tracker_id} {tracker_id}"#     for _, _, confidence, class_id, tracker_id in detections#     if model.model.names[class_id] in label_names# ]'''如果Torch装的是cuda版本的话:labels_draw代码需改成:labels_draw = [f"OBJECT-ID: {tracker_id} CLASS: {model.model.names[class_id]} CF: {confidence:0.2f}"for _,confidence,class_id,tracker_id in detections]'''# 存储labels里的信息labels_write = [f"目标ID: {tracker_id} 目标类别: {class_id} 置信度: {confidence:0.2f}"for _, _, confidence, class_id, tracker_id in detections]'''如果Torch装的是cuda版本的话:labels_write代码需改成:labels_write = [f"OBJECT-ID: {tracker_id} CLASS: {model.model.names[class_id]} CF: {confidence:0.2f}"for _,confidence,class_id,tracker_id in detections]'''pprint(detections)# 打印结果print(detections.xyxy)# 如果显示标签 (要有才可以画呀!)---否则就是原图if (self.show_labels == True) and (self.class_num != 0):img_box = self.box_annotator.annotate(scene=img_box, detections=detections, labels=labels_draw)return labels_write, img_box

 四、其他配置问题

  1. 配置环境中,有一个lap,在pip安装时,需要下载一个东西,根据报错提示中的链接,去下载就好了
  2. 如果你预测失败,多半是yolo版本问题,需要你自己根据报错修改一下,还有关于其他库,就是opencv版本(或者其他库,比如sv等)不一样,根据报错的库名,卸载重新安装对应版本
  3. 此项目的main_window的ui文件是没有的,用猫鱼老哥的开源改的,他当时就没有用ui文件。直接手写了,然后我也只好手写ui了。
  4. 关于type object 'Detections' has no attribute 'from_yolov8'问题的解决:由于Detection删除了from,所以需要降级,又因为前面的sv调用,所以把supervision降级为0.6.0即可解决pip install supervision==0.6.0
  5. 如果你遇到了问题:可以看看这个文章里面的评论区:基于YOLOv8的多端车流检测系统(用于毕设+开源)-CSDN博客

关于训练模型+预测:(如何训练模型——我之前写过一篇文章,可以翻翻前面的看看)

  1. 如果训练版本使用的是和预测版本一样的话,就可以直接用
  2. 要用自己训练的那个yolo版本的话,那么预测项目里面yolo版本就换为你训练的那个版本(不过可能有api改了,但是一般改动不大,自行根据报错修改就好了)

关于使用CUDA

  1. cuda版本的pytorch,需要自己根据项目的注释和报错修改就好了
  2. 因为使用了CUDA,他预测返回的数据格式和之前的不一样,建议自行打印出来,根据数据找到自己需要数据,就可以啦~
  3. label根据具体内容,修改就行了~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225666.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matlab/Simulink的一些功能用法笔记(3)

01--引言 最近加入到一个项目组,有一些测试需要去支持,通过了解原先团队的测试方法后,自己作了如下改善,大大提高了工作效率。这也许就是软件开发的意义吧,能够去除一些重复的机械的人工操作并且结果还非常不可靠。 …

ArcGIS渔网的多种用法

在ArcGIS中有一个渔网工具,顾名思义,可以用来创建包含由矩形像元所组成网络的要素类。不太起眼,但它的用途却有很多,今天跟大家分享一篇关于渔网的多种用途。 1.马赛克地图制作 2.基于网格的设施密度统计制作马赛克地图 准备材…

马萨诸塞州道路数据集预处理

今天我们将分享Massachusetts Roads遥感道路语义分割数据集,并会在下期使用FC-DenseNet进行遥感影像道路提取。 Massachusetts Roads遥感道路语义分割数据集覆盖了美国马萨诸塞州超过2600km2的面积,包含城市、城镇、农村和山区等多种地区的道路信息,图像大小均为1500像素1500像…

Duboo-入门到学废【上篇】

目录 1🥞.什么是duboo 2🌭.架构图 3.🍿快速入门 4.🧇浅浅理解 1.什么是duboo🤶🤶🤶 Dubbo是一个由阿里巴巴开发的基于Java的开源RPC框架。它提供了高性能、透明化的远程方法调用&#xff0…

亚马逊云科技 re:Invent 2023 产品体验:亚马逊云科技产品应用实践 王炸产品 Amazon Q,你的 AI 助手

意料之中 2023年9月25日,亚马逊宣布与 Anthropic 正式展开战略合作,结合双方在更安全的生成式 AI 领域的先进技术和专业知识,加速 Anthropic 未来基础模型的开发,并将其广泛提供给亚马逊云科技的客户使用。 亚马逊云科技开发者社…

嵌入式-stm32-用PWM点亮LED实现呼吸灯

一:知识前置 1.1、LED灯怎么才能亮? 答:LED需要低电平才能亮,高电平是灯灭。 1.2、LED灯为什么可以越来越亮,越来越暗? 答:这是用到不同占空比来实现的,控制LED实现呼吸灯&…

MySQL日期查询 今天、明天、本月、下月、星期、本周第一天、本周最后一天、本周七天日期

文章目录 今天日期明天日期本月第一天本月最后一天下个月第一天当前月已过几天当前月天数当前月所有日期获取星期本周第一天本周最后一天获取本周的七天日期 今天日期 select curdate()明天日期 select DATE_SUB(curdate(),INTERVAL -1 DAY) AS tomorrow本月第一天 select d…

STM32 cubeMX 光敏电阻AD转化实验

文章代码使用 HAL 库。 文章目录 前言一、光敏电阻介绍二、光敏电阻原理图解析三、ADC采样介绍1. 工作原理:2. ADC精度: 四、STM32 cubeMX配置ADC采样五、代码编写总结 前言 实验开发板:STM32F051K8。所需软件:keil5 ,…

ElasticSearch 的 mapping 参数 - fields

概要 在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的 下面,我们先来看一段 es 查询语句: $must ["bool" > ["should" > [["range" > ["user_id.r…

tekton 发布 kubernetes 应用

tekton 发布 kubernetes 应用 基于Kubernetes 服务部署 Tekton Pipeline 实例,部署完成后使用tekton来完成源码拉取、应用打包、镜像推送和应用部署。 本文实现一个 golang-helloworld 项目 CI/CD 的完整流程,具体包括以下步骤: 从 gitee…

设计模式-依赖注入模式

设计模式专栏 模式介绍模式特点应用场景依赖注入和控制反转的区别代码示例Java实现依赖注入模式Python实现依赖注入模式 依赖注入模式在spring中的应用 模式介绍 依赖注入(Dependency Injection,简称DI)是一种面向对象编程中的设计模式&…

【目标跟踪】解决多目标跟踪遮挡问题

文章目录 前言一、判定遮挡目标二、扩展目标框三、结论 前言 目标跟踪在发生遮挡时,极其容易发生Id Switch。网上许多算法忽视跟踪遮挡问题,同时网上相关资料也很少。博主为了解决跟踪遮挡,翻阅大量论文。分享其中一篇论文。论文链接:https:…

网站被恶意扫描怎么办(上WAF)

在网络安全领域,有一大类工具被广泛使用,且作用不可忽视,它就是网络安全扫描器。扫描器是一种专门设计用来评估计算机、网络或者应用中已知的弱点的计算机程序,但是很多人恶意使用,找到网站弱点进行攻击。 扫描器的种…

Vue和React的运行时,校验引入包的上下文差异

背景 系统使用 webpack 5 模块联邦实现微前端,有关如何实现跨应用的代码共享,可参考 如何优雅的实现跨应用的代码共享 里的第三大点。 总之,这里是其他应用使用了某个应用共享出来的reg文件,引入方式为: import REG …

LSTM的记忆能力实验 [HBU]

目录 模型构建 LSTM层 模型训练 多组训练 模型评价 模型在不同长度的数据集上的准确率变化图 模型汇总 总结 长短期记忆网络(Long Short-Term Memory Network,LSTM)是一种可以有效缓解长程依赖问题的循环神经网络.LSTM 的…

ARM12.26

整理三个按键中断代码 key_it.h #ifndef __KEY_IT_H__ #define __KEY_IT_H__ #include"stm32mp1xx_gpio.h" #include"stm32mp1xx_gic.h" #include"stm32mp1xx_exti.h" #include"stm32mp1xx_rcc.h" #include"led.h" void k…

blender使用faceit绑定自己的表情动作

blender使用faceit绑定自己的表情控制模型 faceit是个神器,来记录一下如何让表情动起来保持相对位置头部分离,方便后续绑定faceitfaceit的注册rig生成地标Animate可以修正表情烘培之前记得保存使用Faceit的整个流程 faceit是个神器,来记录一下…

工具系列:TensorFlow决策森林_(3)使用dtreeviz可视化

文章目录 介绍设置安装 TF-DF 和 dtreeviz导入库 可视化分类树加载、清洗和准备数据分割训练/测试集并训练模型训练一个随机森林分类器显示决策树检查叶节点统计信息决策树如何对实例进行分类特征空间划分 可视化回归树加载、清洗和准备数据分割训练/测试集并训练模型训练一个随…

智能优化算法应用:基于协作搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于协作搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于协作搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.协作搜索算法4.实验参数设定5.算法结果6.…

nginx-proxy-manager初次登录502 bad gateway

nginx-proxy-manager初次登录502 bad gateway 按照官方docker-compose安装后,页面如下: 默认账户密码: adminexample.com/changeme点击sign in,提示Bad Gateway 打开调试 重装后依然如此,最后查阅githup issue 找到答案 https://github.com/NginxProxyManager/nginx-proxy-…