性能优化(CPU优化技术)-ARM Neon详细介绍

本文主要介绍ARM Neon技术,包括SIMD技术、SIMT、ARM Neon的指令、寄存器、意图为读者提供对ARM Neon的一个整体理解。

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:高性能(HPC)开发基础教程
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

目录

1 并行技术的几种方式

1.2 SISD

1.3 MIMD

1.4 SIMD

1.4.1 概念和特点

1.4.2 产生的原因

1.5 MISD

1.6 SIMT

2 NEON介绍

2.1 ARM Neon 特点

2.2 ARM Neon 数据类型

2.2.1 Neon 数据类型的命名格式

2.2.2 支持的数据类型      

2.3 ARM Neon 指令

2.4 Neon 寄存器

2.4.1 Neon一般的执行流程

2.4.2 Neon 寄存器

2.5 Neon数据处理指令分类

3 一般使用ARM Neon优化的几种方式


1 并行技术的几种方式

        并行计算根据费林分类法,将指令流和数据流的几种不同的方式分成四种计算机类型:SISD、MISD、MIMD、SIMD。NVIDIA CUDA设计出SIMT技术区别于这四种。

1.2 SISD

        SISD是单指令流单数据流(Single Instruction Single Data)的缩写,是一种计算机体系结构。在SISD中,所有的指令和数据都按照一定的顺序串行执行,即每条指令只处理一个操作数,且每个操作数只在一条指令中使用。

        SISD的特点是简单、直观,但效率较低。因为所有指令和数据都必须按顺序执行,所以无法充分利用现代处理器的并行计算能力。不过,由于其实现相对简单,所以在一些简单的应用场景下仍然有一定的应用价值。

1.3 MIMD

        MIMD是多指令流多数据流(Multiple Instruction Multiple Data)的缩写,是一种计算机体系结构。在MIMD中,可以同时有多条指令在不同的处理单元中并行执行,并且每个处理单元都可以同时处理多个数据。

        与SISD和MISD相比,MIMD能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。由于每个处理单元都可以独立地执行指令和处理数据,所以MIMD也被称为“真正并行”的计算机体系结构。

MIMD需要更复杂的控制逻辑来协调不同处理单元之间的操作,增加了实现难度。但是,随着多核处理器的普及和硬件技术的发展,MIMD已经成为现代高性能计算机的主要架构之一。

1.4 SIMD

1.4.1 概念和特点

        SIMD是单指令流多数据流(Single Instruction Multiple Data)的缩写,是一种计算机体系结构。在SIMD中,所有的指令都按照一定的顺序串行执行,但是每个指令可以同时处理多个数据。

        与SISD和MISD相比,SIMD能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。由于每个指令可以同时处理多个数据,所以SIMD也被称为“向量化”的计算机体系结构。

        SIMD需要更复杂的控制逻辑来协调不同数据之间的操作,增加了实现难度。但是,随着硬件技术的发展,SIMD已经成为现代高性能计算机、图形处理器和数字信号处理器等领域的主要架构之一。

1.4.2 产生的原因

        许多程序需要处理大量的数据集,而且很多都是由少于32bits的位数来存储的。比如在视频、图形、图像处理中的8-bit像素数据;音频编码中的16-bit采样数据等。在诸如上述的情形中,很可能充斥着大量简单而重复的运算,且少有控制代码的出现。因此,SIMD就擅长为这类程序提供更高的性能。比如大量的数据集、2D、3D图像、视频、音频、色彩转换、流体力学、气象学、天体物理等。              

1.5 MISD

        MISD是多指令流单数据流(Multiple Instruction Single Data)的缩写,是一种计算机体系结构。在MISD中,指令和数据都按照一定的顺序串行执行,但是可以同时有多条指令在不同的处理单元中并行执行。

        与SISD相比,MISD能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。但是,由于指令和数据仍然必须按顺序执行,所以仍然存在一些限制。此外,MISD需要更复杂的控制逻辑来协调不同处理单元之间的操作,增加了实现难度

1.6 SIMT

        SIMT是单指令流多线程(Single Instruction, Multiple Threads)的缩写,是一种并行计算模型。在SIMT中,所有的线程都执行相同的指令,但是每个线程可以处理不同的数据。

        与SIMD相比,SIMT能够更好地利用现代处理器的并行计算能力,提高程序的执行效率。由于每个线程可以独立地处理不同的数据,所以SIMT也被称为“线程化”的计算机体系结构。

        SIMT需要更复杂的控制逻辑来协调不同线程之间的操作,增加了实现难度。但是,随着多核处理器和硬件技术的发展,SIMT已经成为现代高性能计算机、图形处理器和游戏机等领域的主要架构之一。

        类似 CPU 上的多线程,所有的核心各有各的执行单元,数据不同,执行的命令是相同的。多个线程各有各的处理单元,和 SIMD 共用一个 ALU 不同。

SIMT

        

2 NEON介绍

         ARM NEON是ARM推出的一种CPU扩展技术SIMD,一般在Cortex-A应用处理器上和少量的Cortex-R处理器上支持Neon技术,使用SIMD方式可以在一定程度上提升CPU的运算效率。

        由于现代处理器的寄存器、ALU都是为了32位或者64为设计的,但是这些大量的数据基本都是8位和16位的,因此如果每次执行一个数据就会很浪费寄存器的宽度,由此引入了Neon 的SIMD技术,通过一条指令控制同时处理多个数据来提高效率,这样就提高了寄存器和ALU的使用效率。

2.1 ARM Neon 特点

        (1)一般每个ARM核都有一个NEON单元,CPU与NEON共用一个ALU,相对于SIMT是每个核都有一个ALU。

        (2)NEON技术最早出现在ARMv7上,ARMv7有16个128位寄存器(Q),32个64位寄存器(D)。ARMv8有32个128位寄存器(Q),64个64位寄存器(D),Q寄存器物理上不存在,但是逻辑上存在,其核心是D寄存器组成的。因此优化时注意,Q寄存器和D寄存器的不能重复使用。

        (3)ARM NEON技术是一种SIMD,即单指令多数据技术,是区别于SISD和SIMT的不同的技术,对于提高CPU运行效率,有很大的作用。

       (4) NEON技术可以用于多线程,并且共享常规CPU的内存和cache,Cache一般有三级Cache L1、L2、L3。

2.2 ARM Neon 数据类型

2.2.1 Neon 数据类型的命名格式

        (1) <type><size>x<number_of_lanes>_t

        (2)<type><size>x<number_of_lanes>x<length_of_array>_t

             例如 float32x4x2_t u1 表示定义两个128位向量寄存器数据 ,用两个128位寄存器存储,

              每个寄存器存储4个float类型数据。

               内部的构造是

                        struct float32x4x2_t

                        {

                                float32x4_t val[2];

                        }float32x4x2_t;

               取每个寄存器数据的格式:

                        u1.val[0]; u1.val[1];

2.2.2 支持的数据类型      

       对64位D寄存器或者是128位Q寄存器拆分,比如int8x16_t指的是int8类型的16个数据存储在一个128位Q寄存器中,Q寄存器是虚拟的,真实并不存在;int8x8_t指的是int8类型的8个数据存储在一个64位D寄存器中。

        主要支持的数据类型如下:

        注:F16不适用于数据处理运算,只用于数据转换,仅用于实现半精度体系结构扩展的系统。

多项式算术在实现某些加密、数据完整性算法中非常有用。

      一个向量寄存器存储数据的格式如下图,通过一次处理多个数据,可以提高效率大概10倍左右,由于寄存器之间有专门的通道,处理的速度极快,因此使用SIMD的编程方式可以使得程序的性能变得优秀。

2.3 ARM Neon 指令

ARM Neon 指令集可以分为以下几类:

        1. 加载和存储指令:用于从内存中加载数据或将数据存储到内存中。包括单精度浮点数的加载和存储指令,以及双精度浮点数的加载和存储指令。

        2. 算术运算指令:用于执行各种算术运算,包括加法、减法、乘法、除法等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        3. 逻辑运算指令:用于执行各种逻辑运算,包括与、或、非等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        4. 比较指令:用于比较两个值的大小关系,包括相等、不等、大于、小于等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        5. 移位指令:用于将一个值向左或向右移动指定的位数。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

        6. 向量数据处理指令:用于对多个数据进行并行处理,包括向量加法、向量减法、向量乘法等。这些指令可以对单精度浮点数和整数进行操作,也可以对双精度浮点数进行操作。

2.4 Neon 寄存器

2.4.1 Neon一般的执行流程

        第一步:从内存load数据到vector寄存器

        第二步:使用Intrinsic指令或者汇编在ALU执行相应的运算

        第三步:将执行后的结果save到内存

2.4.2 Neon 寄存器

 ARMv7上寄存器关系:

        

        

    ARMv7上寄存器的组合:(一个Q寄存器对应2个D寄存器)

  • 16×128-bit寄存器(Q0-Q15);
  • 或32×64-bit寄存器(D0-D31)
  • 或上述寄存器的组合。

    映射关系:

  • D<2n> 映射到 Q 的最低有效半部;
  • D<2n+1> 映射到 Q 的最高有效半部;

    Neon寄存器存储数据的几种形式:

2.5 Neon数据处理指令分类

        一般分为普通指令、长指令、宽指令、窄指令、饱和指令等。

        普通指令(Normal instructions 

        可以对任意类型的向量进行操作,并生成与操作数向量相同大小和通常相同类型的结果向量。
        长指令(Long instructions

        对双字向量操作数进行操作,并生成四倍长字向量结果。结果元素的宽度通常是操作数的两倍,并且类型相同。长指令使用在指令中添加字母L来指定。
        宽指令(Wide instructions)

        对一个双字向量操作数和一个四倍长字向量操作数进行操作,生成四倍长字向量结果。结果元素和第一个操作数都是第二个操作数的元素宽度的两倍。宽指令在指令中添加字母W来指定。
        窄指令(Narrow instructions)

        对四倍长字向量操作数进行操作,并生成双字向量结果。结果元素的宽度通常是操作数元素宽度的一半。窄指令使用在指令中添加字母N来指定。
        饱和变体(Saturating variants)
        在ARM中,饱和算法如下:
                对于有符号饱和运算,如果结果小于 -2^n,则返回的结果将为 -2^n;
                对于无符号饱和运算,如果整个结果将是负值,那么返回的结果是 0;如果结果大于 2^n - 1,则返回的结果将为 2^n - 1;
                在NEON中,饱和算法通过在V和指令助记符之间使用Q前缀来指定饱和指令,原理与上述内容相同。

        来自官方文档的一些参考说明图:

3 一般使用ARM Neon优化的几种方式

        a.通过使用编译选项增加-O3 和针对Neon的优化编译选项,对于一些简单的运算,让编译器

           自动优化,效果会出奇的好

        c.通过使用一些已经优化好的ARM Neon库来加速程序

        d.使用Intrinsic Instruction 来编写SIMD相关的代码优化,编写该类程序时需要注意不同的指

           令速度有所不同,选择合适的指令也是优化的一个难点,同时要对数据进行一个预取,利用

           cache的高性能来提高效率,也要注意不要做超过寄存器长度的处理。

        e.使用ARM Neon汇编来提高运行效率

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!

下一节将介绍如何在一个Android手机进行ARM Neon的优化测试,并且包括Intrinsic指令的使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/228669.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探索MongoDB集群模式:从高可用复制集

MongoDB复制集概述 MongoDB复制集主要用于实现服务的高可用性&#xff0c;与Redis中的哨兵模式相似。它的核心作用是数据的备份和故障转移。 复制集的主要功能 数据复制&#xff1a;数据写入主节点&#xff08;Primary&#xff09;时&#xff0c;自动复制到一个或多个副本节…

Portraiture4.1汉化版PS磨皮插件(支持原生m1芯片m2)

Portraiture汉化版PS磨皮插件。本期推荐一款全新ai算法ps2024中文汉化版ps磨皮插件Portraiture 4.1.2美颜滤镜安装包最新版ps调整肤色插件! 全新Portraiture 4.1.2版本PS人像修图美颜磨皮插件&#xff0c;升级AI算法&#xff0c;并支持多人及全身磨皮美化模式&#xff0c;推荐…

边缘计算网关在温室大棚智能控制系统应用,开启农业新篇章

项目需求 ●目前大棚主要通过人为手动控温度、控水、控光照、控风&#xff0c;希望通过物联网技术在保障产量的前提下&#xff0c;提高作业效率&#xff0c;降低大棚总和管理成本。 ●释放部分劳动力&#xff0c;让农户有精力管理更多大棚&#xff0c;进而增加农户收入。 ●…

Group k-fold解释和代码实现

Group k-fold解释和代码实现 文章目录 一、Group k-fold解释和代码实现是什么&#xff1f;二、 实验数据设置2.1 实验数据生成代码2.2 代码结果 三、实验代码3.1 实验代码3.2 实验结果3.3 结果解释 四、总结 一、Group k-fold解释和代码实现是什么&#xff1f; 0&#xff0c;1…

分布式数据库事务故障恢复的原理与实践

关系数据库中的事务故障恢复并不是一个新问题&#xff0c;自70年代关系数据库诞生之后就一直伴随着数据库技术的发展&#xff0c;并且在分布式数据库的场景下又遇到了一些新的问题。本文将会就事务故障恢复这个问题&#xff0c;分别讲述单机数据库、分布式数据库中遇到的问题和…

java球队信息管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web球队信息管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5…

VS配置PCO相机SDK环境

VS配置PCO相机SDK环境 概述:最近要用到一款PCO相机,需要协调其他部件实现一些独特的功能。因此需要用到PCO相机的SDK,并正确配置环境。良好的环境是成功的一半。其SDK可以在官网下载,选择对应版本的安装即可。这里用的是pco.cpp.1.2.0 Windows,VS 2022 专业版。 链接: P…

OpenOCD简介和下载安装(Ubuntu)

文章目录 OpenOCD简介OpenOCD软件模块OpenOCD源码下载OpenOCD安装 OpenOCD简介 OpenOCD&#xff08;Open On-Chip Debugger&#xff09;开放式片上调试器 OpenOCD官网 https://openocd.org/&#xff0c;进入官网点击 About 可以看到OpenOCD最初的设计是由国外一个叫Dominic Ra…

Glary Utilities Pro - 电脑系统优化全面指南:详尽使用教程

软件简介&#xff1a; Glary Utilities Pro 是一款全面的电脑优化工具&#xff0c;它旨在帮助用户提升计算机的性能和稳定性。这款软件提供了多种功能&#xff0c;包括系统清理、优化、修复以及保护。通过一键扫描&#xff0c;它可以识别并清除无用文件、临时数据、注册表错误等…

计算机网络:知识回顾

0 本节主要内容 问题描述 解决思路 1 问题描述 通过一个应用场景来回顾计算机网络涉及到的协议&#xff08;所有层&#xff09;。如下图所示场景&#xff1a; 学生Bob将笔记本电脑用一根以太网电缆连接到学校的以太网交换机&#xff1b;交换机又与学校的路由器相连&#xf…

Embedding模型在大语言模型中的重要性

引言 随着大型语言模型的发展&#xff0c;以ChatGPT为首&#xff0c;涌现了诸如ChatPDF、BingGPT、NotionAI等多种多样的应用。公众大量地将目光聚焦于生成模型的进展之快&#xff0c;却少有关注支撑许多大型语言模型应用落地的必不可少的Embedding模型。本文将主要介绍为什么…

C练习——银行存款

题目&#xff1a;设银行定期存款的年利率 rate为2.25%,已知存款期为n年&#xff0c;存款本金为capital 元,试编程计算并输出n年后本利之和deposit。 解析&#xff1a;利息本金*利率&#xff0c;下一年的本金又是是今年的本利之和 逻辑&#xff1a;注意浮点数&#xff0c;导入…

【计算机毕业设计】ssm+mysql+jsp实现的在线bbs论坛系统源码

项目介绍 jspssm&#xff08;springspringMVCmybatis&#xff09;MySQL实现的在线bbs论坛系统源码&#xff0c;本系统主要实现了前台用户注册登陆、浏览帖子、发布帖子、个人信息管理、消息通知管理&#xff0c;积分管理&#xff0c;后台管理功能有&#xff1a;友情链接管理、…

蓝牙物联网灯控设计方案

蓝牙技术是当前应用最广泛的无线通信技术之一&#xff0c;工作在全球通用的 2.4GHZ 的ISM 频段。蓝牙的工作距离约为 100 米&#xff0c;具有一定的穿透性&#xff0c;没有方向限制。具有低成本、抗干扰能力强、传输质量高、低功耗等特点。蓝牙技术组网比较简单&#xff0c;无需…

Unity坦克大战开发全流程——结束场景——失败界面

结束场景——失败界面 在玩家类中重写死亡函数 在beginPanel中锁定鼠标

关键字:throw关键字

在 Java 中&#xff0c;throw关键字用于抛出异常。当程序执行过程中发生意外情况&#xff0c;如错误的输入、资源不足、错误的逻辑等&#xff0c;导致程序无法正常执行下去时&#xff0c;可以使用throw关键字抛出异常。 以下是使用throw关键字的一些示例&#xff1a; 抛出异常…

【Linux--多线程同步与互斥】

目录 一、线程互斥1.1相关概念介绍1.2互斥量mutex1.3互斥量接口1.3.1初始化互斥量1.3.2销毁互斥量1.3.3互斥量加锁1.3.4互斥量解锁1.3.5使用互斥量解决上面分苹果问题 1.4互斥原理 二、可重入与线程安全2.1相关概念2.2常见线程不安全的情况2.3常见不可重入的情况2.4 可重入与线…

Python+Django 构建实验室药品管理和预警系统【源码】

人生苦短&#xff0c;我用 Python。 今天给大家分享一个完整的实战案例&#xff1a;Python实现实验室药品管理和预警系统&#xff0c;文末附完整代码! 在线演示环境 项目演示地址&#xff1a;http://101.34.18.118:8002/ &#xff08;图片未压缩&#xff0c;所以加载有点慢&…

穷举vs暴搜vs深搜vs回溯vs剪枝

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析&#xff08;3&#xff09; 目录 &#x1f449;&#x1f3fb;全排列&#x1f449;&#…