[嵌入式AI从0开始到入土]9_yolov5在昇腾上推理

[嵌入式AI从0开始到入土]嵌入式AI系列教程

注:等我摸完鱼再把链接补上
可以关注我的B站号工具人呵呵的个人空间,后期会考虑出视频教程,务必催更,以防我变身鸽王。

第一章 昇腾Altas 200 DK上手
第二章 下载昇腾案例并运行
第三章 官方模型适配工具使用
第四章 炼丹炉的搭建(基于Ubuntu23.04 Desktop)
第五章 Ubuntu远程桌面配置
第六章 下载yolo源码及样例运行验证
第七章 转化为昇腾支持的om离线模型
第八章 jupyter lab的使用
第九章 yolov5在昇腾上推理
未完待续…


文章目录

  • [嵌入式AI从0开始到入土]嵌入式AI系列教程
  • 前言
  • 一、环境准备
    • 1、确认驱动版本
    • 2、CANN安装
    • 3、Mindx sdk安装
  • 二、新建项目
    • 1、input
    • 2、models
    • 3、output
    • 4、utils_det.py
    • 5、main.py
  • 三、运行
  • 四、IDE
  • 五、问题
    • 1、No module named cv2
    • 2、No module named mindx
    • 3、undefined symbol: aclrtCreateStreamWithConfig
    • 4、AttributeError: 'NoneType' object has no attribute ' infer '
    • 5、libpython3.9.so.1.0: cannot open shared object file: No such file or directory
    • 6、libxxx.so :cannot open shared object file
  • 总结


前言

注:本人代码在pc机上完成编写,运行需要昇腾推理卡或者开发者套件
先说下我的环境,pc机是ubuntu23.04,CANN版本7.0.0.alpha001,mindx版本5.0.RC3。Atlas 200 DK上CANN版本5.1.RC2.alpha007,mindx版本3.0.0。务必注意版本兼容性问题
别问我为什么鸽了这么久,不信你就跳过第一节!!!

一、环境准备

1、确认驱动版本

如下图所示,为200DK的驱动和CANN的对照表,需严格按照图中所写版本进行安装,否则运行报错。
关于驱动版本的查看,使用npu-smi info,version后的数字对应版本,但没找到具体对应关系。目前我只确定200DK官方制卡工具提供的镜像是最新的1.0.13.alpha的驱动,也就是version:21.0.4。
似乎200i A2需要使用CANN6.2,一般就是镜像自带的。
在这里插入图片描述

2、CANN安装

如果版本符合要求,直接跳过,否则需要重新安装。这个不在重复,看往期文章就可以了。下载地址点这里。社区版,记得添加硬件信息,不然找不到对应的版本。
注意一点,下载aarch64的,别下成x86_64的就行。

3、Mindx sdk安装

我们需要的是mxVision,另外两个现在暂时用不上
这里我卡了好久,后来才查到也需要安装当前CANN匹配的Mindx。具体对照表没查到,根据论坛和我个人的测试,6.2或者6.3的cann应该安装5.0的mindx,6.0.0或者5.1应该是3.0mindx。
下载地址放在这,我使用镜像自带的5.1cann和3.0.0mindx测试通过。
注意:因为安装mindx的时候会复制算子到cann的文件夹内,所以需要先装cann再装mindx,即使是升降级版本

二、新建项目

这是我的项目结构,项目也已经上传,在本文最上方的绑定资源中。没找到点这里跳转。
在这里插入图片描述
这里atc虽然在里面,但是我们已经转换了模型,所以不再解析了。

1、input

这里我使用了一个images的文件夹用来存放需要检测的图片。正常的jpg图片都可以,但是需要图中有你数据集中的类(我这用的coco128的数据集,支持的物体还是很多的)。

2、models

这里负责存放模型文件和类别名称。names.txt格式如下

person
bicycle
car
motorcycle
airplane
......

3、output

存放输出的结果

4、utils_det.py

主要是模型的前后处理函数,内容如下

import timeimport cv2
import numpy as np
import torch
import torchvisiondef letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True):# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232shape = img.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn img, ratio, (dw, dh)def non_max_suppression(prediction,conf_thres=0.25,iou_thres=0.45,classes=None,agnostic=False,multi_label=False,labels=(),max_det=300,nm=0,  # number of masks
):"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detectionsReturns:list of detections, on (n,6) tensor per image [xyxy, conf, cls]"""if isinstance(prediction, (list, tuple)):  # YOLOv5 model in validation model, output = (inference_out, loss_out)prediction = prediction[0]  # select only inference outputdevice = prediction.devicemps = 'mps' in device.type  # Apple MPSif mps:  # MPS not fully supported yet, convert tensors to CPU before NMSprediction = prediction.cpu()bs = prediction.shape[0]  # batch sizenc = prediction.shape[2] - nm - 5  # number of classesxc = prediction[..., 4] > conf_thres  # candidates# Checksassert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'# Settings# min_wh = 2  # (pixels) minimum box width and heightmax_wh = 7680  # (pixels) maximum box width and heightmax_nms = 30000  # maximum number of boxes into torchvision.ops.nms()time_limit = 0.5 + 0.05 * bs  # seconds to quit aftermulti_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)t = time.time()mi = 5 + nc  # mask start indexoutput = [torch.zeros((0, 6 + nm), device=prediction.device)] * bsfor xi, x in enumerate(prediction):  # image index, image inference# Apply constraints# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-heightx = x[xc[xi]]  # confidence# Cat apriori labels if autolabellingif labels and len(labels[xi]):lb = labels[xi]v = torch.zeros((len(lb), nc + nm + 5), device=x.device)v[:, :4] = lb[:, 1:5]  # boxv[:, 4] = 1.0  # confv[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # clsx = torch.cat((x, v), 0)# If none remain process next imageif not x.shape[0]:continue# Compute confx[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf# Box/Maskbox = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)mask = x[:, mi:]  # zero columns if no masks# Detections matrix nx6 (xyxy, conf, cls)if multi_label:i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).Tx = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)else:  # best class onlyconf, j = x[:, 5:mi].max(1, keepdim=True)x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]# Filter by classif classes is not None:x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]# Check shapen = x.shape[0]  # number of boxesif not n:  # no boxescontinueelif n > max_nms:  # excess boxesx = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidenceelse:x = x[x[:, 4].argsort(descending=True)]  # sort by confidence# Batched NMSc = x[:, 5:6] * (0 if agnostic else max_wh)  # classesboxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scoresi = torchvision.ops.nms(boxes, scores, iou_thres)  # NMSif i.shape[0] > max_det:  # limit detectionsi = i[:max_det]output[xi] = x[i]if mps:output[xi] = output[xi].to(device)if (time.time() - t) > time_limit:print(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')break  # time limit exceededreturn outputdef xywh2xyxy(x):# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-righty = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn ydef get_labels_from_txt(path):labels_dict = dict()with open(path) as f:for cat_id, label in enumerate(f.readlines()):labels_dict[cat_id] = label.strip()return labels_dictdef scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):# Rescale coords (xyxy) from img1_shape to img0_shapeif ratio_pad is None:  # calculate from img0_shapegain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / newpad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh paddingelse:gain = ratio_pad[0][0]pad = ratio_pad[1]coords[:, [0, 2]] -= pad[0]  # x paddingcoords[:, [1, 3]] -= pad[1]  # y paddingcoords[:, :4] /= gainclip_coords(coords, img0_shape)return coordsdef clip_coords(boxes, shape):# Clip bounding xyxy bounding boxes to image shape (height, width)if isinstance(boxes, torch.Tensor):  # faster individuallyboxes[:, 0].clamp_(0, shape[1])  # x1boxes[:, 1].clamp_(0, shape[0])  # y1boxes[:, 2].clamp_(0, shape[1])  # x2boxes[:, 3].clamp_(0, shape[0])  # y2else:  # np.array (faster grouped)boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2def nms(box_out, conf_thres=0.4, iou_thres=0.5):try:boxout = non_max_suppression(box_out, conf_thres=conf_thres, iou_thres=iou_thres, multi_label=True)except:boxout = non_max_suppression(box_out, conf_thres=conf_thres, iou_thres=iou_thres)return boxoutdef draw_bbox(bbox, img0, color, wt, names):det_result_str = ''for idx, class_id in enumerate(bbox[:, 5]):if float(bbox[idx][4] < float(0.05)):continueimg0 = cv2.rectangle(img0, (int(bbox[idx][0]), int(bbox[idx][1])), (int(bbox[idx][2]), int(bbox[idx][3])), color, wt)img0 = cv2.putText(img0, str(idx) + ' ' + names[int(class_id)], (int(bbox[idx][0]), int(bbox[idx][1] + 16)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)img0 = cv2.putText(img0, '{:.4f}'.format(bbox[idx][4]), (int(bbox[idx][0]), int(bbox[idx][1] + 32)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)det_result_str += '{} {} {} {} {} {}\n'.format(names[bbox[idx][5]], str(bbox[idx][4]), bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3])return img0

5、main.py

这里也是卡了我好几天,mindx.sdk那两行ide一直在报错,但似乎能跑。

import cv2  # 图片处理三方库,用于对图片进行前后处理
import numpy as np  # 用于对多维数组进行计算
import torch  # 深度学习运算框架,此处主要用来处理数据from mindx.sdk import Tensor  # mxVision 中的 Tensor 数据结构
from mindx.sdk import base  # mxVision 推理接口from utils_det import get_labels_from_txt, letterbox, scale_coords, nms, draw_bbox  # 模型前后处理相关函数# 初始化资源和变量
base.mx_init()  # 初始化 mxVision 资源
DEVICE_ID = 0  # 设备id
model_path = 'models/best.om'  # 模型路径
image_path = 'input/images/1.jpg'  # 测试图片路径# 数据前处理
img_bgr = cv2.imread(image_path, cv2.IMREAD_COLOR)  # 读入图片
img, scale_ratio, pad_size = letterbox(img_bgr, new_shape=[640, 640])  # 对图像进行缩放与填充,保持长宽比
img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, HWC to CHW
img = np.expand_dims(img, 0).astype(np.float16)  # 将形状转换为 channel first (1, 3, 640, 640),即扩展第一维为 batchsize
img = np.ascontiguousarray(img) / 255.0  # 转换为内存连续存储的数组
img = Tensor(img)  # 将numpy转为转为Tensor类# 模型推理, 得到模型输出
model = base.model(modelPath=model_path, deviceId=DEVICE_ID)  # 初始化 base.model 类
output = model.infer([img])[0]  # 执行推理。输入数据类型:List[base.Tensor], 返回模型推理输出的 List[base.Tensor]# 后处理
output.to_host()  # 将 Tensor 数据转移到内存
output = np.array(output)  # 将数据转为 numpy array 类型
boxout = nms(torch.tensor(output), conf_thres=0.4, iou_thres=0.5)  # 利用非极大值抑制处理模型输出,conf_thres 为置信度阈值,iou_thres 为iou阈值
pred_all = boxout[0].numpy()  # 转换为numpy数组
scale_coords([640, 640], pred_all[:, :4], img_bgr.shape, ratio_pad=(scale_ratio, pad_size))  # 将推理结果缩放到原始图片大小
labels_dict = get_labels_from_txt('models/names.txt')  # 得到类别信息,返回序号与类别对应的字典
img_dw = draw_bbox(pred_all, img_bgr, (0, 255, 0), 2, labels_dict)  # 画出检测框、类别、概率# 保存图片到文件
cv2.imwrite('output/result.png', img_dw)
print('save infer result success')

三、运行

很简单,但是务必注意,200DK默认的python是2.7.17,而镜像中配置的是python3.9.7,我们的包也是安装到python3里的。当然,你可以直接做软连接,具体方便请自行搜索。

python3 main.py

运行成功会有如图所示的提示
在这里插入图片描述

四、IDE

这里我必须狠狠的压力一下华为,mindstudio竟然不支持打开远程ssh的工程,甚至选了远程的python,还读取不到pip软件包。
这里pycharm虽然可以远程,包也读取正常,但是运行代码后似乎不会同步结果到本地。当然,你愿意的话可以远程打开工程,当然,没记错的话这个是收费的功能。
所以,那肯定得掏出我们祖传多年的vscode啦。我们只需要安装Remote-SSH这个插件,然后添加如下配置

Host Altas200DKHostName 192.168.3.2User HwHiAiUser

点击连接,然后安装python扩展,即可开始愉快的敲代码啦!

五、问题

1、No module named cv2

首先确认安装,使用pip list命令查询是否有opencv-pythonopencv-python-headless。如果存在,请检查你的运行main.py的python版本是否是这个pip列出包的这个环境。在200DK上就需要使用python3而不是python
如果不存在,使用这个命令安装opencv。

pip install opencv-python

之后重复以上动作。

2、No module named mindx

在mindx sdk的安装目录下找到这个包,pip安装即可。

pip install mindx-5.0rc3-py3-none-any.whl

在这里插入图片描述

3、undefined symbol: aclrtCreateStreamWithConfig

这大概率就是mindx和cann版本不匹配导致的。更换匹配的版本即可。

4、AttributeError: ‘NoneType’ object has no attribute ’ infer ’

请检查模型路径是否正确,没错,我承认我真的没看见路径错了,花了两天去怀疑环境有问题,甚至重新制卡了。
另外,没有昇腾的推理卡也会报这个错误。可以使用npu-smi info来查看推理卡是否正常被识别。

5、libpython3.9.so.1.0: cannot open shared object file: No such file or directory

这个问题会在安装mindx的时候出现,请务必注意。解决方法如下:
将Python安装路径下的libpython3.9.so.1.0对象(我的在/usr/local/python3.9.7/lib/下),复制到“/usr/lib”下。

6、libxxx.so :cannot open shared object file

这里可能是类似libadump_server.so这种的,其他运行库都一样的操作。

  1. 搜索这个文件,发现在ascend-toolkit/latest/x86_64-linux/lib64下面。
  2. 添加路径至环境变量.bashrc 发现还是找不到
  3. 执行vim /etc/ld.so.conf ,如果不能保存的话使用sudo提权
  4. 在最下面加入这个共享库的绝对路径,例如/home/ai/Ascend/ascend-toolkit/latest/x86_64-linux/lib64
  5. 执行ldconfig更新共享库路径
  6. 问题解决

总结

这个案例基本就是按照华为官方文档里写的改的,但他那个案例似乎下载不了。目前推理好像有点慢,应该是在前后处理耗时比较长,大家可以自行对前后处理函数做优化。或者直接换成c++的版本,性能会有所提高,但我是废物[大哭],根本看不懂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/230823.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣刷题-二叉树-构建树

106.从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如&#xff0c;给出 中序遍历 inorder [9,3,15,20,7] 后序遍历 postorder [9,15,7,20,3] 返回如下的二叉树&#xff1a; 思路 参考&#xff1a;…

AI:112-基于卷积神经网络的美食图片识别与菜谱推荐

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…

python包chromadb安装失败总结

1&#xff0c;背景&#xff1a; 最近在学习langchain的课程&#xff0c;里面创建自己的知识库的Retrieval模块中&#xff0c;需要用到向量数据库。 所以按照官方的教程&#xff08;vectorstores&#xff09;&#xff0c;准备使用chroma的向量数据库。图片来源 2&#xff0c;问…

HCIA-Datacom题库(自己整理分类的)——其他网络协议【完】

&#xff08;一&#xff09;单选 下列属于链路状态协议的是? Direct static FTP OSPF 解析&#xff1a; FTP&#xff1a;文件传输协议 OSPF&#xff1a;链路状态路由协议 如下图所示的网络主机A通过Telnet登录到路由器A然后在远程的界面通过FTP获取路由器的配置文件&…

APache 网页优化

技能目标&#xff1a; 掌握 Apache 网页压缩 掌握 Apache 网页缓存 掌握 Apache 网页防盗链 掌握 Apache 隐藏版本信息 4.1 网页压缩与缓存 在使用 Apache 作为 Web 服务器的过程中&#xff0c;只有对 Apache 服务器进行适当的优化配 置&…

Go 编程必备:bufio 库的全面指南与实战技巧

Go 编程必备&#xff1a;bufio 库的全面指南与实战技巧 引言bufio 库概览bufio.Readerbufio.Writerbufio.Scanner 深入 bufio.Readerbufio.Reader 的基本使用高级功能应用场景 探索 bufio.Writerbufio.Writer 的基本使用高级功能应用场景 运用 bufio.Scannerbufio.Scanner 的基…

前端开发个人简历范本(2024最新版-附模板)

前端开发工程师个人简历范本> 年龄 25岁 性别 男 毕业院校 XX大学 张三 学历 邮箱 leeywai-tools.cn 本科 专业 计算机科学与技术 个人梗概 拥有扎实的前端开发技能和丰富的实践经验 善于与团队合作&#xff0c;适应能力强&#xff0c;能够快速融入团队并贡献自…

独立看门狗与窗口看门狗

一、简介 STM32F10xxx内置两个看门狗&#xff0c;提供了更高的安全性、时间的精确性和使用的灵活性。两个看门狗设备(独立看门狗和窗口看门狗)可用来检测和解决由软件错误引起的故障&#xff1b;当计数器达到给定的超时值时&#xff0c;触发一个中断(仅适用于窗口型看门狗)或产…

SSL/TLS 握手过程详解

SSL握手过程详解 1、SSL/TLS 历史发展2、SSL/TLS握手过程概览2.1、协商交换密码套件和参数2.2、验证一方或双方的身份2.3、创建/交换对称会话密钥 3、TLS 1.2 握手过程详解4、TLS 1.3 握手过程详解5、The TLS 1.2 handshake – Diffie-Hellman Edition 1、SSL/TLS 历史发展 可…

UDP单播

CMakeLists.txt文件中添加如下行&#xff1a; link_libraries(ws2_32) 1.发送端 #include <iostream> #include <winsock2.h> #include <cstdio>#pragma comment(lib, "Ws2_32.lib") // Link with ws2_32.libint main() {1.Initialize winsock…

全网独家:基于openeuler-20.03-lts底包构建opengauss数据库V5.0.1LTS的单机容器

近期想测试一下opengauss数据库,官网上单机容器部署只有x86-64平台CentOS 7.6和ARM64平台 openEuler20.03 LTS两种底包方案。本文系全网独家在x86平台上基于openeuler-20.03-lts底包构建opengauss数据库V5.0.1LTS的单机容器。 opengauss官网上单机容器部署只有x86-64平台Cent…

按摩上门预约小程序源码系统 开发组合:PHP+MySQL 附带完整的搭建教程

现代生活节奏的加快&#xff0c;人们越来越注重健康与放松。按摩作为传统的舒缓方式&#xff0c;市场需求逐年上升。然而&#xff0c;传统的按摩服务预约方式较为繁琐&#xff0c;用户需拨打热线电话或前往实体店进行预约&#xff0c;这无疑增加了用户的操作成本。因此&#xf…

C#的checked关键字判断是否溢出

目录 一、定义 二、示例&#xff1a; 三、生成&#xff1a; 一、定义 使用checked关键字处理溢出。 在进行数学运算时&#xff0c;由于变量类型不同&#xff0c;数值的值域也有所不同。如果变量中的数值超出了变量的值域&#xff0c;则会出现溢出情况&#xff0c;出现溢出…

【ModelScope】从入门到进阶

计算机视觉任务 任务&#xff08;Task&#xff09;中文任务&#xff08;Task&#xff09;英文任务说明单标签图像分类image-classification对图像中的不同特征根据类别进行区分通用图像分割image-segmentation识别图像主体与图像背景进行分离文字检测ocr-detection将图像中的文…

03-微服务-Ribbon负载均衡

Ribbon负载均衡 1.1.负载均衡原理 SpringCloud底层其实是利用了一个名为Ribbon的组件&#xff0c;来实现负载均衡功能的。 那么我们发出的请求明明是http://userservice/user/1&#xff0c;怎么变成了http://localhost:8081的呢&#xff1f; 1.2.源码跟踪 为什么我们只输入…

汉诺塔问题(递归超详细)C++,leetcode

文章目录 前言一、题目分析二、算法原理1.为什么要用递归2.如何编写代码 三、代码实现总结 前言 在本文章中&#xff0c;我们将要详细介绍一下汉诺塔问题&#xff0c;本题目我们采用递归的方式解决相关的内容 一、题目分析 题目要求详解&#xff1a;   &#x1f31f; 有三个…

css原子化的框架Tailwindcss的使用教程(原始html和vue项目的安装与配置)

安装教程 中文官网教程 原始的HTML里面使用 新建文件夹npm init -y 初始化项目 安装相关依赖 npm install -D tailwindcss postcss-cli autoprefixer初始化两个文件 npx tailwindcss init -p根目录下新建src/style.css tailwind base; tailwind components; tailwind ut…

【python入门】day12:bug及其处理思路

bug的常见类型 粗心 / 没有好习惯 思路不清 lst[{rating:[9.7,2062397],id:1292052,type:[犯罪,剧情],title:肖申克的救赎,actors:[蒂姆罗宾斯,摩根弗里曼]},{rating:[9.6,1528760],id:1291546,type:[剧情,爱情,同性],title:霸王别姬,actors:[张国荣 ,张丰毅 , 巩俐 ,葛优]},{r…

卷麻了,00后测试用例写的比我还好,简直无地自容...........

经常看到无论是刚入职场的新人&#xff0c;还是工作了一段时间的老人&#xff0c;都会对编写测试用例感到困扰&#xff1f;例如&#xff1a; 如何编写测试用例&#xff1f; 作为一个测试新人&#xff0c;刚开始接触测试&#xff0c;对于怎么写测试用例很是头疼&#xff0c;无法…

linux性能优化

文章目录 性能优化图CPU进程和cpu原理性能指标 性能优化图 CPU 进程和cpu原理 进程与线程&#xff1a; 进程是程序的执行实例&#xff0c;有自己的地址空间和系统资源。线程是进程内的执行单元&#xff0c;共享进程的资源。在多核系统中&#xff0c;使用多线程可以更好地利用多…