Python库学习(十四):ORM框架-SQLAlchemy

1.介绍

SQLAlchemy 是一个用于 Python SQL 工具和对象关系映射(ORM)库。它允许开发者通过 Python 代码而不是 SQL查询语言来操作数据库。SQLAlchemy 提供了一种灵活且强大的方式来与关系型数据库交互,支持多种数据库后端,如 PostgreSQL、MySQL、SQLite 等。

本文使用的SQLAlchemy版本: 1.4.51

1.1 Core和Orm

当学习使用 SQLAlchemy 时,经常会听到两个核心概念:SQLAlchemy ORMSQLAlchemy Core。它们分别是 SQLAlchemy 的两个主要组件,用于处理数据库操作的不同层次。

a.SQLAlchemy ORM:

  • 提供了一种将数据库表映射到 Python 对象的方式,通过定义 Python 类来表示数据库表。
  • 对象关系映射允许开发者通过使用对象和类的方式进行数据库操作,而不必直接使用 SQL 语句。
  • 更适合那些希望以面向对象的方式与数据库交互、利用类和对象的优势的开发者。

b.SQLAlchemy Core:

  • 以更灵活的方式构建 SQL 查询,并允许直接执行原生 SQL语句。
  • 不涉及对象和类的概念,更注重于 SQL 查询语句的构建和执行。
  • 适合那些希望直接使用原生SQL的开发者

c.SQLAlchemy核心组件图

alt

1.2 文档资料

  • SQLAlchemy 1.4 中文文档
  • SQLAlchemy 2.0 官方文档

2.使用准备

2.1 安装sqlalchemy

@注意: 虽然sqlalchemy已经升级到2.0, 但发现自动生成模型工具sqlacodegen生成的代码还是基于1.4,加上2.0相关中文文档还不是很完善,所以这里仍然使用1.4版本 。

# 安装
$  python-learn pip install sqlalchemy==1.4.51
...
Installing collected packages: sqlalchemy
Successfully installed sqlalchemy-1.4.51

2.2 安装数据库依赖

sqlalchemy可以操作多种数据库,需要注意的是,不同的数据库的连接方式是不一样,依赖的库也不一样,这里列举一些常见数据依赖和连接格式:

2.2.1 关系型数据库
数据库依赖连接字符串
MySQLpymysqlmysql+pymysql://username:password@localhost:3306/database_name
PostgreSQLpsycopg2postgresql://username:password@localhost:5432/database_name
SQLite不需要sqlite:///example.db
Oraclecx_Oracleoracle://username:password@localhost:1521/orcl
2.2.2 NoSQL数据库
数据库依赖连接字符串
MongoDBpymongomongodb://username:password@localhost:27017/database_name
CouchDBcouchdbcouchdb://username:password@localhost:5984/database_name
Redisredisredis://localhost:6379/0

说明: 虽然SQLAlchemy支持两种方式操作数据库(Core和Orm),因为精力和文章篇幅问题,下面只学习ORM方式操作。

3.快速使用

3.1 使用流程

使用SQLAlchemy ORM的一般流程包括以下步骤:

  • 定义模型类(ORM): 定义 Python类,其属性和数据表中的字段一一映射,一个模型类就是一个表。
  • 创建引擎(Engine): 通俗的讲就是和数据库建立链接;
  • 创建会话(Session): 它提供了一种管理数据库事务和执行数据库操作的方式。会话允许你在应用程序中创建、更新、删除数据库中的数据,并提供了一系列方法来管理事务的提交和回滚。
  • 执行数据库操作: 使用会话进行数据库操作,包括添加、修改、删除数据。

3.2 定义模型

from sqlalchemy import Column, String, TIMESTAMP
from sqlalchemy.dialects.mysql import BIGINT, TINYINT, VARCHAR
from sqlalchemy.ext.declarative import declarative_base

# 模型父类
Base = declarative_base()

# 用户模型和表一一对应
class YmUser(Base):
    __tablename__ = 'ym_user'
    __table_args__ = {'comment''用户表'}

    id = Column(BIGINT, primary_key=True, comment='主键')
    union_id = Column(String(64), comment='微信开放平台下的用户唯一标识')
    open_id = Column(String(64), comment='微信openid')
    nick_name = Column(String(32), index=True, comment='昵称')
    password = Column(String(64), comment='密码')
    avatar = Column(String(255),nullable=False, index=True, server_default=text("''"), comment='头像')
    phone = Column(String(11), index=True, comment='手机号')
    email = Column(String(50), comment='电子邮箱')
    last_login = Column(String(20), comment='上次登录时间')
    status = Column(TINYINT, server_default=text("'1'"), comment='状态;-1:黑名单 1:正常')
    delete_at = Column(String(20), comment='删除时间')
    created_at = Column(TIMESTAMP, comment='创建时间')
    updated_at = Column(TIMESTAMP, comment='更新时间')

Column常用参数说明:

sqlalchemy 中的 Column 类有很多参数,以下是一些常用的参数:

  • name (str): 列的名称。
  • type_ (TypeEngine): 列的数据类型,例如 String, Integer, DateTime 等。
  • primary_key (bool): 指定是否为主键列。
  • unique (bool): 指定是否唯一。
  • nullable (bool): 指定是否可以为空。
  • default: 在插入新记录时,如果没有提供该列的值,则将使用默认值。
  • server_default: 指定服务器端的默认值。
  • index (bool): 指定是否创建索引。
  • autoincrement (bool): 指定是否自增。
  • onupdate: 在更新时设置的值。
  • server_onupdate: 服务器端在更新时设置的值。
  • comment (str): 列的注释。

3.3 创建引擎

from sqlalchemy import create_engine

dbHost = 'mysql+pymysql://root:root@127.0.0.1:3306/test'
engine = create_engine(
    dbHost,
    echo=True,  # 是否打印SQL
    pool_size=10,  # 连接池的大小,指定同时在连接池中保持的数据库连接数,默认:5
    max_overflow=20,  # 超出连接池大小的连接数,超过这个数量的连接将被丢弃,默认: 5
)

@注意: create_engine 函数在调用时并不会立即与数据库建立真实的连接。相反,它仅是为了创建一个数据库引擎对象,该对象封装了连接到数据库的配置和行为,但直到实际执行数据库操作时才会尝试建立连接。

常见参数说明:

  • echo: True/False,是否打印执行的 SQL,默认 False;
  • pool_size: 连接池的大小,指同时在连接池中保持的数据库连接数,默认为5;
  • max_overflow: 溢出连接的最大数量。当连接池达到上限后,新的连接请求将被放置在溢出队列中。如果溢出队列满了,将引发异常,设置值需要 >=pool_size;
  • pool_recycle: 指定连接在连接池中保持的最长时间(以秒为单位)。当设置为非 None 时,连接将在此时间后被回收,避免数据库服务器断开空闲连接,默认为-1。

更多参数可查看文档: https://docs.sqlalchemy.org/en/14/core/engines.html

3.4 封装会话

from sqlalchemy.orm import sessionmaker
from contextlib import contextmanager

# 创建会话工厂
Session = sessionmaker(bind=engine)

@contextmanager
def getSession(autoCommitByExit=True):
    """使用上下文管理资源关闭"""
    session = Session()
    try:
        yield session
        # 退出时,是否自动提交
        if autoCommitByExit:
            session.commit()
    except Exception as e:
        session.rollback()
        raise e
    finally:
        session.close()

3.5 使用示例

import json
from sqlalchemy import create_engine, and_, or_, update

def queryRows():
    """ 查询示例 """
    with getSession() as session:
        query = session.query(YmUser).filter(
            or_(
                and_(
                    YmUser.id > 100,
                    YmUser.id < 200,
                    YmUser.nick_name.like("%飞%")
                ),
                YmUser.phone.in_(["17408049453""15795343139""13189106944"])
            )
        )
        result = query.all()
        # 转成json
        json_result = json.dumps([user.__dict__ for user in result], default=str)
        print("json_result:", json_result)
        for row in result:
            print("id:{} nick_name:{} phone:{}".format(row.id, row.nick_name, row.phone))

    return result

上述代码执行后生成SQL如下:

SELECT ... FROM ym_user 
WHERE  id > 100 AND id < 200 
AND nick_name LIKE '%飞%' 
OR phone IN ('17408049453','15795343139','13189106944')

4.新增数据

4.1 新增单条

def addOne():
    """ 新增单条数据 """
    row = YmUser(
        union_id="ui_12344343434",
        open_id="op_ksjdhjjkdhdjdhh",
        nick_name="娃哈哈",
        password="123456",
        email="test@163.com",
        phone="17600000000",
        last_login=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        avatar="http://img-avatar.com/head-abc.jpg"
    )
    # 这里想获取新增后的id,需要refresh数据,就不能在上下文里提交
    with getSession(Falseas session:
        session.add(row)
        session.commit()
        session.refresh(row)

    print("添加成功,id:{}".format(row.id))
    print("row:".format(row.__dict__))
    

""" 
添加成功,id:10104
row: {'_sa_instance_state': <sqlalchemy.orm.state.InstanceState object at 0x7fc78824f460>, 'nick_name': '娃哈哈', 'id': 10104, 'avatar': 'http://img-avatar.com/head-abc.jpg', 'email': 'test@163.com', 'status': 1, 'created_at': datetime.datetime(2024, 1, 4, 19, 29, 11), 'password': '123456', 'union_id': 'ui_12344343434', 'open_id': 'op_ksjdhjjkdhdjdhh', 'phone': '17600000000', 'last_login': '2024-01-04 19:29:11', 'delete_at': '', 'updated_at': datetime.datetime(2024, 1, 4, 19, 29, 11)}
"""
   

4.2 批量添加

def batchAdd():
    """ 批量新增数据 """
    rows = []
    for n in range(3):
        row = YmUser(
            union_id="ui_12344343434",
            open_id="op_ksjdhjjkdhdjdhh",
            nick_name="娃哈哈" + str(n),
            password="123456",
            email="test@163.com",
            phone="17600000000",
            last_login=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            avatar="http://img-avatar.com/head-abc.jpg"
        )
        rows.append(row)
    # 这里设置不在上下文中提交,否则报错
    with getSession() as session:
        session.bulk_save_objects(rows)

5.更新数据

5.1 根据字典更新

def updateDictById(id: int, newVal: dict) -> int:
    """ 根据id更新数据(值是字典) """
    updateStmt = update(YmUser).where(YmUser.id == id).values(newVal)
    with getSession() as session:
        result = session.execute(updateStmt)
        rowcount = result.rowcount
    return rowcount
  
# 调用
updateVal = updateDictById(10, {
    "nick_name""猿码记",
    "email""猿码记@163.com",
    "status"-1,
})

# 生成SQL
"""
UPDATE ym_user SET nick_name='猿码记', email='猿码记@163.com', status=-1 WHERE ym_user.id = 10
"""

5.2 根据模型更新

def updateModelById(id: int):
    """ 根据id更新数据(值是model) """
    with getSession() as session:
        # 先查在更新
        exist = session.query(YmUser).filter(YmUser.id == id).first()
        if exist.id == 0:
            return
        exist.nick_name = "呵呵呵呵呵"
        exist.email = "112233@qq.com"

# 调用
updateModelById(20)
# 生成SQL
"""
UPDATE ym_user SET nick_name='呵呵呵呵呵', email='112233@qq.com' WHERE ym_user.id = 20
"""

6.查询数据

6.1 常用方法列表

  • query.first(): 返回查询结果的第一条记录,如果没有结果则返回 None

  • query.one(): 返回查询结果的唯一一条记录,如果结果集为空或包含多条记录,则引发 sqlalchemy.exc.NoResultFoundsqlalchemy.exc.MultipleResultsFound 异常。

  • query.one_or_none(): 返回查询结果的唯一一条记录,如果结果集为空则返回 None,如果包含多条记录则引发 sqlalchemy.exc.MultipleResultsFound 异常。

  • query.scalar(): 返回查询结果的第一列的第一个值,通常用于获取单个聚合函数的结果,如 COUNTSUM 等。

  • query.filter(): 添加过滤条件到查询中,可以通过链式调用添加多个条件。

  • query.limit(10): 限制查询结果的数量。

  • query.join(*props, **kwargs): 执行连接操作,可以连接其他表进行复杂的查询。

  • query.outerjoin(*props, **kwargs): 执行外连接操作,返回左表中的所有记录以及右表中匹配的记录。

  • query.distinct(): 去除查询结果中的重复记录。

  • query.count(): 返回查询结果的记录数量,通常与 filter 结合使用以实现条件查询的数量统计。

6.2 常用筛选器运算符

# 等于
query.filter(User.name == '张三')
# 不等于
query.filter(User.name != '张三')
# like
query.filter(User.name.like('%张三%'))
# 不区分大小写like
query.filter(User.email.ilike('%163.com%'))
# in
query.filter(User.name.in_(['张三''李四''王麻子']))
# not in
query.filter(~User.name.in_(['张三''李四''王麻子']))
# AND查询
from sqlalchemy import and_
query.filter(and_(User.name == '张三', User.phone == '1760000000'))
# OR查询
from sqlalchemy import or_
query.filter(or_(User.name == '张三', User.phone == '1760000000'))
# order by查询 ORDER BY ym_user.id DESC, ym_user.phone DESC
query.order_by(desc(YmUser.id), desc(YmUser.phone))
# group by 查询
query.group_by(YmUser.phone)

6.3 分页查询示例

def queryByPage(page: int, pageSize: int, conditions: dict):
    """ 分页查询 """
    # 计算起始索引
    offset = (page - 1) * pageSize
    with getSession() as session:
        query = session.query(YmUser)
        # 填充查询条件
        if len(conditions) > 0:
            query = query.filter_by(**conditions)

        # 查询总条数
        total = query.count()
        # 排序分页
        query = query.order_by(desc(YmUser.id)).offset(offset).limit(pageSize)
        # 查询记录
        result = query.all()

    return total, result
  

# 调用
conditions = {
    "status"1,
}
queryByPage(15, conditions)

# 生成SQL
"""
SELECT * FROM ym_user 
WHERE ym_user.status = 1 ORDER BY ym_user.id DESC 
 LIMIT 0, 5
"""
 

6.4 使用文本SQL

def queryByTextSQL():
    """ 使用文本SQL查询 """
    with getSession() as session:
        # 文本中直接带参数
        query = session.query(YmUser).filter(text("id > 100 and id < 500"))
        # 文本中,使用params绑定参数
        query = query.filter(text("nick_name like :nick_name and last_login > :last_login")).params(
            nick_name='%龙%',
            last_login='2023-10-01 00:00:00'
        )
        # 排序
        query = query.order_by(text("id desc"))
        # 查询记录
        result = query.all()
        return result
      
# 调用
queryByTextSQL()

# 生成SQL
"""
SELECT * FROM ym_user 
WHERE id > 100 and id < 500 
AND nick_name like '%龙%' and last_login > '2023-10-01 00:00:00' 
ORDER BY id desc
"""

6.5 连接查询

def queryByJoin():
    """ 连接查询"""
    with getSession() as session:
        # -------方式一: 同时查询多张表 -------
        query = session.query(YmUser, YmUserInfo).filter(YmUser.id == YmUserInfo.uid, YmUser.id < 50)
        query = query.filter(YmUser.id == YmUserInfo.uid, YmUser.id < 50)
        result = query.all()
        for user, userInfo in result:
            print("user:", user.__dict__)
            print("userInfo:", userInfo.__dict__)

        # -------方式二: 使用Join函数 -------
        queryJoin = session.query(YmUser).join(YmUserInfo, YmUser.id == YmUserInfo.uid)
        queryJoin = queryJoin.filter(YmUser.id < 50)
        result2 = queryJoin.all()

        # -------方式三: 使用outerjoin函数 -------
        queryJoin2 = session.query(YmUser).outerjoin(YmUserInfo, YmUser.id == YmUserInfo.uid)
        queryJoin2 = queryJoin2.filter(YmUser.id < 50)
        result3 = queryJoin2.all()

        return result, result2, result3

三种方式生成的SQL分别如下:

-- 方式一
SELECT ym_user.*,ym_user_info.*
FROM ym_user, ym_user_info 
WHERE ym_user.id = ym_user_info.uid AND ym_user.id < 50

-- 方式二
SELECT ym_user.*,ym_user_info.* 
FROM ym_user INNER JOIN ym_user_info ON ym_user.id = ym_user_info.uid 
WHERE ym_user.id < 50

-- 方式三
SELECT ym_user.*,ym_user_info.* 
FROM ym_user LEFT OUTER JOIN ym_user_info ON ym_user.id = ym_user_info.uid 
WHERE ym_user.id < %(id_1)s

@注意: 只有方式一查询的结果是同时返回两个模型的数据YmUser、YmUserInfo,其他方式返回的都是模型YmUser,返回几个模型取决于query()中的参数,是几个模型

7.模型工具

这是个懒人神器,它可以自动生成 SQLAlchemy 模型类相关代码,不用我们挨个去写模型,它的实现原理:通过连接到数据库,然后分析数据库结构,最后生成对应的 SQLAlchemy 模型类的代码。

项目开源地址: https://github.com/agronholm/sqlacodegen

@说明: 本来一开始学习的SQLAlchemy 2.0版本,因为这个工具生成的模型不能完全适配SQLAlchemy 2.0,后来就果断放弃,改用SQLAlchemy 1.4版本

7.1 安装

# 默认安装
$ pip install sqlacodegen
# 也可以指定版本安装,本人体验的是最新版本
$ pip install sqlacodegen==3.0.0rc3

7.2 生成模型

# 生成mysql相关表的模型
$ sqlacodegen mysql+pymysql://root:root@127.0.0.1:3306/test --outfile models.py

7.3 生成结果

from sqlalchemy import Column, Index, String, TIMESTAMP, text
from sqlalchemy.dialects.mysql import BIGINT, TINYINT, VARCHAR
from sqlalchemy.orm import declarative_base
Base = declarative_base()

class YmUser(Base):
    __tablename__ = 'ym_user'
    __table_args__ = (
        Index('idx_nick_name''nick_name'),
        Index('idx_phone''phone'),
        {'comment''用户表'}
    )

    id = Column(BIGINT, primary_key=True, comment='主键')
    union_id = Column(String(64), nullable=False, server_default=text("''"), comment='微信开放平台下的用户唯一标识')
    open_id = Column(String(64), nullable=False, server_default=text("''"), comment='微信openid')
    nick_name = Column(String(32), nullable=False, server_default=text("''"), comment='昵称')
    password = Column(String(64), nullable=False, server_default=text("''"), comment='密码')
    avatar = Column(String(255), nullable=False, server_default=text("''"), comment='头像')
    phone = Column(String(11), nullable=False, server_default=text("''"), comment='手机号')
    email = Column(String(50), nullable=False, server_default=text("''"), comment='电子邮箱')
    last_login = Column(String(20), nullable=False, server_default=text("''"), comment='上次登录时间')
    status = Column(TINYINT, nullable=False, server_default=text("'1'"), comment='状态;-1:黑名单 1:正常')
    delete_at = Column(String(20), nullable=False, server_default=text("''"), comment='删除时间')
    created_at = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP'), comment='创建时间')
    updated_at = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP'),
                        comment='更新时间')

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/232999.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

源码编译部署篇(二)源码编译milvus成功后如何启动standalone并调试成功!

Milvus启动和调试 0 前言1 Milvus启动【问题描述】出现Aborted问题【问题分析】【解决方法】安装Pulsar服务执行单机启动命令解决监听端口号 2 Milvus调试编写launch.json验证单例调试成功 3 遇到的问题汇总问题1问题2:Permission denied 0 前言 由于Milvus官方文档只提及如何…

web期末作业动态时钟UI界面毛玻璃版

效果图 html代码奉上 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthde…

数据结构实验1:栈和队列的应用

目录 一、实验目的 二、实验原理 1.1栈的基本操作 1.1.1 栈的定义 1.1.2 初始化栈 1.1.3 压栈&#xff08;Push&#xff09; 1.1.4 出栈&#xff08;Pop&#xff09; 1.1.5 判空&#xff08;isEmpty&#xff09; 1.1.6 查看栈顶元素&#xff08;Top&#xff09; 1.1…

DNS安全与访问控制

一、DNS安全 1、DNSSEC原理 DNSSEC依靠数字签名保证DNS应答报文的真实性和完整性。权威域名服务器用自己的私有密钥对资源记录&#xff08;Resource Record, RR&#xff09;进行签名&#xff0c;解析服务器用权威服务器的公开密钥对收到的应答信息进行验证。如果验证失败&…

【LeetCode】150. 逆波兰表达式求值(ASCII码)

今日学习的文章链接和视频链接 leetcode题目地址&#xff1a;150. 逆波兰表达式求值 代码随想录题解地址&#xff1a;代码随想录 题目简介 即将后缀表达式转换成中缀表达式并计算。 给你一个字符串数组 tokens &#xff0c;表示一个根据 逆波兰表示法 表示的算术表达式。 …

Spring学习之——AOP(面向切面)

AOP 概念 AOP&#xff1a;全称是Aspect Oriented Programming即&#xff1a;面向切面编程。 简单的说它就是把我们程序重复的代码抽取出来&#xff0c;在需要执行的时候&#xff0c;使用动态代理的技术&#xff0c;在不修改源码的基础上&#xff0c;对程序进行增强&#xff…

CentOS设置docker静态ip

docker容器的ip地址在每次启动后启动顺序设置ip地址&#xff0c;为解决ip地址变动的问题&#xff0c;我们有必要设置docker内部ip地址固定。 第一步先创建一个本地ip地址固定容器的ip docker network create —driver bridge —subnet172.18.12.0/16 —gateway172.18.1.1 wn_d…

MybatisPlus—自定义SQL

目录 1. 自定义SQL介绍 2. 自定义SQL使用步骤 3. 自定义SQL实例 4.总结 1. 自定义SQL介绍 介绍&#xff1a;自定义SQL并不是由我们来编写全部SQL语句&#xff0c;而是通过利用MyBatisPlus的Wrapper来构建复杂的Where条件&#xff0c;然后自己定义SQL语句中剩下的部分。 使…

基于B/S架构的数字孪生智慧监所可视化监管系统

1 前言 物联网技术的发展使云计算技术得到了迅猛的发展及广泛的应用&#xff0c;智能体系的创建已经成为监狱发展的必然趋势。 智慧监狱的创建、智能化管理的推行是监狱管理的创新&#xff0c;也是监狱整体工作水平提升的具体体现。 1.1 建设背景 近年来&#xff0c;司法部不…

vue3+echart绘制中国地图并根据后端返回的坐标实现涟漪动画效果

1.效果图 2.前期准备 main.js app.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M6tDCApL,// v:3.0, // 默认使用3.0// type: WebGL // ||API 默认API (使用此模式 BMapBMapGL) });i…

数据库设计-DDL

D D L \huge{DDL} DDL DDL&#xff1a;数据库定义语言&#xff0c;用来定义数据对象&#xff08;数据库、表&#xff09; 简单操作 首先在cmd中进行操作&#xff0c;登录数据库 show databases; -- 以列表的形式显示所有的数据库create database [if not exists] 数据库名称…

【unity】Obi插件架构组成(参数详细解释)——解算器四面板设置、三种更新器、参与者介绍

文章目录 一、架构&#xff08;Architecture&#xff09;1.1 Obi解算器&#xff08;ObiSolver&#xff09;1.2 ObiUpdater1.3 ObiActorBlueprint1.4 Obi参与者&#xff08;ObiActor&#xff0c;如ObiRope等&#xff09; 二、Obi解算器&#xff08;ObiSolver&#xff09;2.1 解算…

uniapp中组件库的Textarea 文本域的丰富使用方法

目录 #平台差异说明 #基本使用 #字数统计 #自动增高 #禁用状态 #下划线模式 #格式化处理 API #List Props #Methods #List Events 文本域此组件满足了可能出现的表单信息补充&#xff0c;编辑等实际逻辑的功能&#xff0c;内置了字数校验等 注意&#xff1a; 由于…

【深度学习:Few-shot learning】理解深入小样本学习中的孪生网络

【深度学习&#xff1a;Few-shot learning】理解深入小样本学习中的孪生网络 深入理解孪生网络&#xff1a;架构、应用与未来展望小样本学习的诞生元学习小样本学习孪生网络的基本概念孪生网络的细节Triplet Loss架构特点关键组件训练过程主要应用领域未来展望示例图片结论 深入…

经典八股文之RocketMQ

核心概念 NameServer nameserver是整个rocketmq的大脑&#xff0c;是rocketmq的注册中心。broker在启动时向所有nameserver注册。生产者在发送消息之前先从 NameServer 获取 Broker 服务器地址列表(消费者一 样)&#xff0c;然后根据负载均衡算法从列表中选择一台服务器进行消…

Matplotlib for C++不完全手册

matplotlib-cpp是Matplotlib&#xff08;MPL&#xff09;为C提供的一个用于python的matplotlib绘图库的C包装器。它的构建类似于Matlab和matplotlib使用的绘图API。 However, the function signatures might differ and Matplotlib for C does not support the full functional…

电子学会C/C++编程等级考试2023年12月(二级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:统计指定范围里的数 给定一个数的序列S,以及一个区间[L, R], 求序列中介于该区间的数的个数,即序列中大于等于L且小于等于R的数的个数。 时间限制:1000 内存限制:65536 输入 第一行1个整数n,分别表示序列的长度。(0 < n ≤…

ThinkPHP5多小区物业管理系统源码(支持多小区)

基于 ThinkPHP5 Bootstrap 倾力打造的多小区物业 管理系统源码&#xff0c;操作简单&#xff0c;功能完善&#xff0c;用户体验良好 开发环境PHP7mysql 安装步骤: 1.新建数据库db_estate,还原数据db_estate.sql 2.修改配置文件&#xff1a;application/database.php 3.运…

pyqt6 + pycharm 搭建+使用入门

首先安装PyQt6和PyQt6-tools。使用如下命令&#xff1a; pip install PyQt6 PyQt6-tools 但是运行后会报如下错误&#xff1a; 这个时候按照提示执行命令升级pip即可 python.exe -m pip install --upgrade pip 配置pycharm&#xff1a; 打开pycharm&#xff0c;进入setting&am…

Java最大优先队列设计与实现

Java 学习面试指南&#xff1a;https://javaxiaobear.cn 1、API设计 类名MaxPriorityQueue构造方法MaxPriorityQueue(int capacity)&#xff1a;创建容量为capacity的MaxPriorityQueue对象成员方法private boolean less(int i,int j)&#xff1a;判断堆中索引i处的元素是否小…