竞赛保研 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cvimport osimport numpy as npimport randomimport pickleimport timestart_time = time.time()data_dir = './data'batch_save_path = './batch_files'# 创建batch文件存储的文件夹os.makedirs(batch_save_path, exist_ok=True)# 图片统一大小:100 * 100# 训练集 20000:100个batch文件,每个文件200张图片# 验证集 5000:一个测试文件,测试时 50张 x 100 批次# 进入图片数据的目录,读取图片信息all_data_files = os.listdir(os.path.join(data_dir, 'train/'))# print(all_data_files)# 打算数据的顺序random.shuffle(all_data_files)all_train_files = all_data_files[:20000]all_test_files = all_data_files[20000:]train_data = []train_label = []train_filenames = []test_data = []test_label = []test_filenames = []# 训练集for each in all_train_files:img = cv.imread(os.path.join(data_dir,'train/',each),1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)train_data.append(img_data)if 'cat' in each:train_label.append(0)elif 'dog' in each:train_label.append(1)else:raise Exception('%s is wrong train file'%(each))train_filenames.append(each)# 测试集for each in all_test_files:img = cv.imread(os.path.join(data_dir,'train/',each), 1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)test_data.append(img_data)if 'cat' in each:test_label.append(0)elif 'dog' in each:test_label.append(1)else:raise Exception('%s is wrong test file'%(each))test_filenames.append(each)print(len(train_data), len(test_data))# 制作100个batch文件start = 0end = 200for num in range(1, 101):batch_data = train_data[start: end]batch_label = train_label[start: end]batch_filenames = train_filenames[start: end]batch_name = 'training batch {} of 15'.format(num)all_data = {'data':batch_data,'label':batch_label,'filenames':batch_filenames,'name':batch_name}with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:pickle.dump(all_data, f)start += 200end += 200# 制作测试文件all_test_data = {'data':test_data,'label':test_label,'filenames':test_filenames,'name':'test batch 1 of 1'}with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:pickle.dump(all_test_data, f)end_time = time.time()print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')self.y = tf.placeholder(tf.int64, [None], 'output_data')self.keep_prob = tf.placeholder(tf.float32)# 图片输入网络中fc = self.conv_net(self.x, self.keep_prob)self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)self.y_ = tf.nn.softmax(fc) # 计算每一类的概率self.predict = tf.argmax(fc, 1)self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/234588.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SUDA-计算机网路-期末复习提纲

写在前面 帮苏大的同学整理的计网复习材料,用的是他们老师划定的范围。 1.负责互联网协议开发、标准制定、地址分配的国际组织名称及其主要职责 (1) 地址支持组织(ASO)负责IP地址系统的管理。 (2) 域名支持组织(DNSO)…

实用Unity3D Log打印工具XDebug

特点 显示时间,精确到毫秒显示当前帧数(在主线程中的打印才有意义,非主线程显示为-1)有三种条件编译符(如下图) 注:要能显示线程中的当前帧数,要在app启动时,初始化mainThreadID字段条件编译符…

开源加解密库之GmSSL

一、简介 GmSSL是由北京大学自主开发的国产商用密码开源库,实现了对国密算法、标准和安全通信协议的全面功能覆盖,支持包括移动端在内的主流操作系统和处理器,支持密码钥匙、密码卡等典型国产密码硬件,提供功能丰富的命令行工具及…

在k8s集群中部署多nginx-ingress

关于ingress的介绍,前面已经详细讲过了,参考ingress-nginx详解和部署方案。本案例ingress的部署使用deploymentLB的方式。 参考链接: 多个ingress部署 文章目录 1. 下载ingress的文件2. 文件资源分析3. 部署ingress3.1 部署第一套ingress3.1…

日志系统一(elasticsearch+filebeat+logstash+kibana)

目录 一、es集群部署 安装java环境 部署es集群 安装IK分词器插件 二、filebeat安装(docker方式) 三、logstash部署 四、kibana部署 背景:因业务需求需要将nginx、java、ingress日志进行收集。 架构:filebeatlogstasheskib…

【数据库原理】期末突击(1)

有不会的题可以后台问我的哦,看见了就会回。 本文章主要是选择题、填空题,下章将更新综合题,祝大家期末心想事成。 一、选择题 下列关系运算中,( C )运算不属于专门的关系运算。 A.选择 …

Tensorflow2.0笔记 - 创建tensor

tensor创建可以基于numpy,list或者tensorflow本身的API。 笔记直接上代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plttf.__version__#通过numpy创建tensor tensor0 tf.convert_to_tensor(np.ones([2,3])) print(te…

Mysql 分割字符串,一行变多行,@rownum,mysql.help_topic

1 前言 朋友最近遇到一个比较棘手的 sql 问题,让我帮忙看看: 他有两张表 testa 和 testb ,一个表存的日期,另一个表存字符串例如 2023-11-01,2023-11-02,如何将这两张表关联起来,只查 testa 表的数据&#…

<Python>PyQt5中UI界面和逻辑函数分开写的一种方式

前言 如果经常使用PyQt5这种模块来编写带UI界面的程序,那么很自然的就会涉及到,一旦程序比较大,UI控件多的时候,需要将UI和逻辑程序分离,这样方便管理,也方便维护。 配置: 平台:win…

三、yolov8训练结果查看和模型预测

训练结果查看 1、在模型训练结束后,如下图所示,找到该文件夹。 2、然后找到weights文件夹中的best.pt文件,这就是该数据训练后的模型。 模型预测 1、在assets文件夹下创建FPC-2文件夹,放入一些同类FPC预测结果。 2、和训练…

什么是活动的DWDM网络?

DWDM系统被认为是一个基于应答器的系统,可以帮助在数据中心互连设置中在站点之间传输大量数据。不同于无源DWDM网络, DWDM网络通常包括OEO、主动DWDM Mux Demux、EDFA、DCM和其他主动WDM组件,更适合远程传输。此外,主动DWDM网络还…

x-cmd pkg | pdfcpu - 强大的 PDF 处理工具

目录 简介首次用户多功能支持性能表现安全的加密处理进一步阅读 简介 pdfcpu 是一个用 Go 编写的 PDF 处理库。同时它也提供 API 和 CLI。pdfcpu 提供了丰富的 PDF 操作功能,用户还能自己编写配置文件,用来管理和使用各种自定义字体并存储有效的默认配置…

【前端】前后端的网络通信基础操作(原生ajax, axios, fetch)

概述 前后端网络请求工具 原生ajaxfetch apiaxios GET和POST请求 get只能发纯文本 post可以发不同类型的数据,要设置请求头,需要告诉服务器一些额外信息 测试服务器地址 有一些公共的测试 API 可供学习和测试用途。这些 API 允许你发送 HTTP 请求…

5.MapReduce之Combiner-预聚合

目录 概述本地预计算 Combiner 意义实践前提代码日志观察 结束 概述 在 MR、Spark、Flink 中,常用的减少网络传输的手段。 通常在 Reducer 端合并,shuffle 的数据量比在 Mapper 端要大,根据业务情况及数据量极大时,将大幅度降低效…

Pod控制器详解

一、什么是pod控制器 Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障&am…

Excel中快速隐藏中间四位手机号或者身份证号等

注意:以下方式必须再新增一列,配合旧的一列用来对比操作,即根据旧的一列的数据源,通过新的一列的操作逻辑来生成新的隐藏数据 1、快捷方式是使用CtrlE 新建一列:手动输入第一个手机号隐藏后的号码,即在N2单…

深入理解C#中的引用类型、引用赋值以及 `ref` 关键字

深入理解C#中的引用类型、引用赋值以及 ref 关键字 在C#编程中,理解引用类型、引用赋值以及 ref 关键字的使用对于编写高效、可靠的代码至关重要。本文将深入探讨这些概念,帮助您更好地理解C#的工作原理。 引用类型简介 在C#中,所有的类型都…

「Verilog学习笔记」任意奇数倍时钟分频

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 timescale 1ns/1nsmodule clk_divider#(parameter dividor 5) ( input clk_in,input rst_n,output clk_out );parameter CNT_WIDTH $clog2(dividor - 1) ; reg flag1, f…

基于FPGA的万兆以太网学习(1)

万兆(10G) 以太网测速视频:FPGA 实现UDP万兆以太网的速度测试 1 代码结构 2 硬件需求 SFP+屏蔽笼可以插入千兆或万兆光模块。SFP+信号定义与 SFP 一致。 3 Xilinx IP 10 Gigabit Ethernet Subsystem IP说明 文章链接: Xilinx IP 10 Gigabit Ethernet Subsystem IP 4 E…

springboot项目创建及采用本地tomcat打包发布

springboot项目发布 maven使用 解压maven安装包 修改配置文件settings.xml 更改镜像(使用maven添加依赖时&#xff0c;选择下载的地址&#xff0c;百度云已提供) <mirror><id>nexus-aliyun</id><mirrorOf>*</mirrorOf><name>Nexus aliyu…