2024年美赛数学建模思路 - 复盘:校园消费行为分析

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/236931.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为mux vlan+DHCP+单臂路由用法配置案例

最终效果&#xff1a; vlan 2模拟局域网服务器&#xff0c;手动配置地址&#xff0c;也能上公网 vlan 3、4用dhcp分配地址 vlan 4的用户之间不能互通&#xff0c;但可以和其它vlan通&#xff0c;也能上公网 vlan 3的用户不受任何限制可以和任何vlan通&#xff0c;也能上公网 交…

oracle 12c pdb expdp/impdp 数据导入导出

环境 (源)rac 环境 byoradbrac 系统版本&#xff1a;Red Hat Enterprise Linux Server release 6.5 软件版本&#xff1a;Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit byoradb1&#xff1a;172.17.38.44 byoradb2&#xff1a;172.17.38.45 (目的&am…

vivado ip manager cache

https://china.xilinx.com/video/hardware/configuring-managing-reusable-ip-vivado.html “Core Containers”&#xff08;核容器&#xff09;&#xff1a;勾选Use Core Containers for IP&#xff08;为 IP 使用核容器&#xff09;即可使用核容器功能&#xff0c;该功能支持…

LeetCode讲解篇之39. 组合总和

文章目录 题目描述题解思路题解代码 题目描述 题解思路 首先排序数组&#xff0c;然后开始选择数字&#xff0c;当选择数字num后&#xff0c;在去选择大于等于num的合法数字&#xff0c;计算过程中的数字和&#xff0c;直到选数字和等于target, 加入结果集&#xff0c;若数字和…

002 Golang-channel-practice

第二题&#xff1a; 创建一个生产器和接收器&#xff0c;再建立一个无缓冲的channel。生产器负责把数据放进管道里&#xff0c;接收器负责把管道里面的数据打印出来。这里我们开5个协程把数据打印出来。 直接上代码&#xff01; package mainimport ("fmt" )func …

基于微信小程序的音乐平台 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示 四、核心代码4.1 查询单首音乐4.2 新增音乐4.3 新增音乐订单4.4 查询音乐订单4.5 新增音乐收藏 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的音乐平台&#xff0c;包含了音乐…

vulhub中的Apache SSI 远程命令执行漏洞

Apache SSI 远程命令执行漏洞 1.cd到ssi-rce cd /opt/vulhub/httpd/ssi-rce/ 2.执行docker-compose up -d docker-compose up -d 3.查看靶场是否开启成功 dooker ps 拉取成功了 4.访问url 这里已经执行成功了&#xff0c;注意这里需要加入/upload.php 5.写入一句话木马 &…

【2024系统架构设计】 系统架构设计师第二版-面向服务架构设计理论与实践

目录 一 概述 二 SOA的参考架构 三 SOA主要协议和规范 四 SOA设计标准和原则 五 SOA的设计模式 六 SOA的构建和实施 ​

计算机毕业设计——SpringBoot仓库管理系统(附源码)

1&#xff0c;绪论 1.2&#xff0c;项目背景 随着电子计算机技术和信息网络技术的发明和应用&#xff0c;使着人类社会从工业经济时代向知识经济时代发展。在这个知识经济时代里&#xff0c;仓库管理系统将会成为企业生产以及运作不可缺少的管理工具。这个仓库管理系统是由&a…

[Flutter] extends、implements、mixin和 abstract、extension的使用介绍说明

类创建&#xff1a;abstract&#xff08;抽象类&#xff09;、extension&#xff08;扩展&#xff09; 1.abstract&#xff08;抽象类&#xff09; dart 抽象类主要用于定义标准&#xff0c;子类可以继承抽象类&#xff0c;也可以实现抽象类接口。抽象类通过abstract 关键字来…

OSG StatsHandler 初步学习

osg为视景器的使用和调试提供了丰富的辅助组件&#xff0c;它们主要是以osg::ViewerBase的成员变量或交互事件处理器(osgGA::GUIEventHandler)的形式出现。osgViewer::StatsHandler、osg::Stats类就是其中的两个经常用到的辅助组件。 #include<osgViewer/Viewer> #inclu…

CCF模拟题 202305-1 重复局面

试题编号&#xff1a; 202305-1 试题名称&#xff1a; 重复局面 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 512.0MB 题目背景 国际象棋在对局时&#xff0c;同一局面连续或间断出现3次或3次以上&#xff0c;可由任意一方提出和棋。 问题描述 国际象棋每一个局面可以用…

linux软件安装(yum命令)

1.Linux系统的应用商店 操作系统安装软件有许多种方式&#xff0c;一般分为&#xff1a; 下载安装包自行安装 如win系统使用exe文件、msi文件等如mac系统使用dmg文件、pkg文件等 系统的应用商店内安装 如win系统有Microsoft Store商店如mac系统有AppStore商店 Linux命令行…

【Databend】行列转化:一行变多行和简单分列

文章目录 数据准备和需求生成序列和分隔函数根据分隔符变多行JSON 数据简单分列总结 数据准备和需求 行列转化在实际工作中很常见&#xff0c;其中最常见的有一行变多行&#xff0c;有下面一份数据&#xff1a; drop table if exists fact_suject_data; create table if not …

高效便捷的远程管理利器——Royal TSX for Mac软件介绍

Royal TSX for Mac是一款功能强大、操作便捷的远程管理软件。无论是远程桌面、SSH、VNC、Telnet还是FTP&#xff0c;用户都可以通过Royal TSX轻松地远程连接和管理各种服务器、计算机和网络设备。 Royal TSX for Mac提供了直观的界面和丰富的功能&#xff0c;让用户能够快速便…

09-Python服务链路追踪案例

skyWalking Python agent requires SkyWalking 8.0 and Python 3.7 # 将django包导入 ~$ cd /apps ~$ tar xf django-test.tgz ~$ cd django-test# 安装模块 ~$ apt install python3-pip ~$ pip3 install -r requirements.txt# 创建django项目mysite ~$ django-admin startpro…

手把手教你用 Stable Diffusion 写好提示词

Stable Diffusion 技术把 AI 图像生成提高到了一个全新高度&#xff0c;文生图 Text to image 生成质量很大程度上取决于你的提示词 Prompt 好不好。 前面文章写了一篇文章&#xff1a;一份保姆级的 Stable Diffusion 部署教程&#xff0c;开启你的炼丹之路 本文从“如何写好…

网络正常运行时间监控工具

正常运行时间是衡量系统可靠性的指标&#xff0c;表示为机器工作和可用时间的百分比。当提到 IT 网络时&#xff0c;正常运行时间是衡量网络设备、网站和其他服务的可用性的指标。网络正常运行时间通常以百分位数来衡量&#xff0c;例如“五个 9”&#xff0c;这意味着系统在 9…

宝塔面板安装MySQL8数据库

第一步&#xff1a;搜索mysql 第二步: 点击安装 我这里选择安装8版本 第三步&#xff1a;给宝塔配置mysql防火墙 第四步&#xff1a;修改数据库密码 第五步&#xff1a;想要使用navicat连接 需要修改root的权限 &#xff08;1&#xff09;使用secureCRT先登录mysql (2) 输入u…

计算机毕业设计-----SSH企业人力资源管理系统

项目介绍 企业人力资源管理系统&#xff0c;分为超级管理员与普通管理员两种角色,超级管理员可以对普通管理员进行添加、删除等操作&#xff1b; 超级管理员主要功能有&#xff1a; 部门管理、员工管理、招聘管理、培训管理、奖惩管理、薪资管理、用户信息修改、系统管理&…