数据交付变革:研发到产运自助化的转型之路

作者 | Chris

导读

本文讲述为了提升产运侧数据观察、分析、决策的效率,支持业务的快速迭代,移动生态数据研发部对数仓建模与BI工具完成升级,采用宽表建模与TDA平台相结合的方案,一站式自助解决数据应用需求。在此过程中,数据交付模式发生了变革,从研发定制化开发到产运自助化获取开始转变,业务侧数据获取更加方便、快捷、准确。

全文3540字,预计阅读时间9分钟。

01 背景与目标

1.1 背景

大数据时代,基于海量数据分析、挖掘高价值信息,用于指导、驱动业务快速发展,是数据建设的基础能力及价值体现。

数据驱动业务,一方面需要我们构建全面、准确、及时、易用的数据仓库,另一方面也需要建设统一的数据可视化平台,集成adhoc查询、数据分析、数据报表等应用能力,让业务高效、便捷、准确的获取数据,赋能业务增长。

业界内通常采用分层模型构建数仓,从ODS>DWD>DWS>ADS逐层建模,通过定制化的开发ADS层来满足业务侧需求。该模式下,复杂多变的业务场景都需要数据研发进行参与,数据获取时间依赖开发侧排期,定制化的结果不够灵活需要频繁迭代,ADS层占用数据研发的时间占比较高。随着业务发展越来越快,数据需求大量增加,所需的人力成本增加、交付效率降低。因此,需要探索新的数据开发交付模式,完成从研发定制化开发到产运自助化获取的转变。

图片

考虑到数据应用的人群从研发到产运的转变,数据的使用门槛需要进一步降低,对数仓与数据可视化平台的使用体验有更高要求。

1.2 目标

数仓的使用体验表现在直接交互的宽表层,理想的宽表应满足以下几点:

1、全面:覆盖场景足够丰富,业务需求皆可满足

2、准确:逻辑统一收敛,口径简单清晰,业务使用无歧义

3、及时:解决上游时效差异化带来的木桶效应,字段分批产出

4、易用:需求场景通过单张宽表即可获取,避免多表关联

数据平台需要考虑用户差异化的SQL能力、分析习惯、分析方法,在数据可视化、数据计算性能等方面满足用户体验:

1、可视化:拖拽式搭建,算子及样式丰富

2、计算性能:秒级查询耗时

基于上述想法,探索宽表建模替代分层建模,并引入TDA平台,通过数仓模型与数据可视化平台的结合,支持产运自助化获取所需数据。

02 宽表建模

内容生态B端业务场景复杂,来自流量日志、业务数据及集群数据的ODS层表300+张,为了平衡数据时效性及易用性,构建了500+张DWD、DWS及ADS表,存在表血缘关系复杂、中间表冗余、数据口径不一致、SQL复杂度高等问题。
为了解决上述问题,提出宽表建模方案:根据产品功能和业务场景划分主题,明确主题最细粒度及所有的业务过程,基于ODS表直接构建宽表层,宽表覆盖业务所需全部字段,支持即席分析、报表查询等所有数据应用场景。

图片

△数仓建模演进思路

2.1 技术方案

由于宽表本身上游数据源多、数据量大,当多个上游数据就绪时间不尽相同时,宽表的产出时效会出现木桶效应。此外为了尽可能覆盖全部业务需求,封装了大量的处理逻辑及关联计算,代码更加复杂,维护成本与回溯成本非常高。为了解决上述问题,探索并实现了宽表建模多版本方案。根据数据的时效差异,将宽表拆分为多个计算任务,每个任务产出宽表的部分字段,并根据配置进行数据合并,最终产出完整的宽表。

同一版本受上游数据源影响在不同日期的产出时效不可控,为了提升宽表整体的时效,需要各版本数据产出后尽快合并至宽表,且合并后,需要为下游提供依赖检查机制,感知该版本字段已产出。

2.1.1 多版本合并

为了保障各版本数据产出后尽快合并至宽表,且避免同分区有两个合并任务同时运行,造成数据错乱问题,引入了分布式锁服务,通过抢占锁是否成功来决定是否需要合并。整体流程图如下:

图片

△多版本合并流程

加锁的维度是表名和日期分区,是否加锁成功基于锁状态、任务状态及过期时间进行判定:

1、锁未占用,说明当前无其他合并任务,该任务加锁成功

2、锁占用,任务状态异常,说明当前合并任务失败,该任务强制解锁并加锁成功

3、锁占用,任务状态Accept,且锁占用时间超过过期时间,Kill正在运行的任务后,该任务强制解锁并加锁成功

在多版本合并方案中,为了提升宽表合并任务的通用性,抽取了公共的合并逻辑,基于配置文件,将分版本数据产出后的文件合并至宽表中。配置文件涵盖多组文件地址、关联条件、关联类型及字段信息。每一个文件地址由独立任务生成,负责该数据源相关逻辑下沉,数据口径的变更只需更改对应的任务,维护成本较低。

2.1.2 下游依赖

多版本宽表中的字段基于时效差异分版本产出,因此需要提供依赖检查机制,使下游能及时使用就绪字段,满足高时效的数据应用场景。方案中提供了三种不同的依赖检查方式:

1、任务组依赖:通过调度平台的任务名进行依赖检查,支持厂内的pingo,tds调度平台

2、AFS文件依赖:某一版本合并到宽表后,会产出该版本任务成功的AFS标识文件,可同于下游进行依赖检查

3、字段产出探测服务:对于数据应用平台(如:一脉、TDA等),平台无法通过任务组及AFS文件依赖识别查询的字段是否产出。针对这些场景,提供字段探测服务,在某一版本合并到宽表后,会更新探测服务中该版本相关字段的产出标识,数据应用平台通过API接口调用判定本次查询的字段在查询时间范围内是否就绪,保障数据的可用性

图片

△字段探测服务

2.2 宽表优点

  • 成本方面:经典分层数仓层与层之间冗余严重,采用宽表建模后避免了构建繁多的DWD、DWS层表,一个主题仅有一到两个宽表,数仓中表的数量减少60%,存储下降30%。此外,表的精简带来数据任务的减少,数据查询也由多个DWD、DWS表的关联优化至一张宽表,避免了大量的shuffle运算,即席查询耗时由分钟级缩短至秒级,计算资源节省20%。

  • 质量方面:宽表的字段非常丰富,达到上千个,尽可能覆盖主题所有的业务场景,因此应用层的数据完全可以收敛至宽表层,消除了分层数仓中因表的冗余及逻辑下沉不彻底造成的口径不一致问题,与产品侧基于宽表层管理指标口径,沟通更流畅,数据准确性更高。

  • 效率方面:宽表模型易用性非常好,复杂需求通过单张宽表即可满足,具备基础的SQL能力即可获取所有数据,业务使用体验非常好。

03 可视化平台

常见的数据需求分为三类:临时提数、报表开发、数据分析。对于临时提数场景,宽表模型对业务覆盖的全面性及数据获取的易用性,可以支持产运侧通过简单的SQL拼写获取数据;对于报表开发场景,仍需要数据研发构建ADS层应用表,并同步至OLAP存储,利用Sugar等报表平台进行配置;对于数据分析场景,产运侧可基于宽表获取分析数据,但需要保存灵活多变的分析结果,并进行可视化展示,体验较差。

宽表模型极大简化了数据查询的复杂度,为自助化获取数据提供了基础能力,报表及数据分析所要求的数据可视化能力成为了产运自助化获取数据的阻力。对此,引入TDA数据可视化平台,支持数据分析及仪表盘拖拽式搭建,数据处理和分析能力丰富,一站式解决数据应用需求。

图片

△自助化思路

该模式下,数据研发负责主题宽表的建设、同步及查询性能的优化,数据产品同学负责数据集的配置,运营同学基于数据集进行可视化分析及仪表盘配置,实现数据应用的自助化。

宽表建设:按照宽表建模思想构建主题宽表。

数据同步:数据从HDFS至ClickHouse同步,数仓宽表每个版本产出后启动同步任务,并将distinct查询场景的key在数据同步阶段进行shuffle。

性能优化:为了优化查询耗时,引入了缓存及自动上卷两个机制。缓存包含两种情况:用户首次查询,将查询结果进行缓存;基于用户查询历史记录,通过离线任务方式轮询来模拟用户查询,并将查询结果更新缓存。自动上卷则基于用户历史查询记录的特征,针对高频的维度进行projection聚合。目前,针对千万级数据查询场景,查询耗时秒级。

图片

△缓存+自动上卷机制

04 总结

通过数仓宽表模型与数据可视化平台的结合,完成了数据需求从研发定制化开发到产运自助化获取的转变,数据分析的灵活性和效率大幅提升,降低了人力成本。

1、研发承接的需求量下降57%,其中数据应用需求占比由60%降低至10%。

图片

△需求数量

图片

2、可视化分析场景每日PV 4000+,整体数据需求自助化率达到92%。

3、单次查询耗时从分钟级缩短至秒级。

4、报表开发周期由天级缩短至小时级。

——END——

推荐阅读

百度搜索exgraph图执行引擎设计与实践

百度搜索&金融:构建高时效、高可用的分布式数据传输系统

“踩坑”经验分享:Swift语言落地实践

移动端防截屏录屏技术在百度账户系统实践

AI Native工程化:百度App AI互动技术实践

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/238711.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试|如何使用selenium操作窗口滚动条

简介 我们在进行自动化测试工作的时候,如果页面内容过多,一次性加载耗时太长的话,会使用分段加载来加载页面内容,比如开始只加载页面顶端的内容,而如果要加载更多的数据,就需要我们向下滑动,让…

跳跃游戏,经典算法实战。

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

Go 优雅判断 interface 是否为 nil

关注公众号【爱发白日梦的后端】分享技术干货、读书笔记、开源项目、实战经验、高效开发工具等,您的关注将是我的更新动力! 背景 很久之前发过一篇文章:《10个令人惊叹的Go语言技巧,让你的代码更加优雅》,这篇文章中第…

Dockerfile: CMD与ENTRYPOINT区别

CMD和ENTRYPOINT的作用 CMD和ENTRYPOINT这两个命令,我接触到的是用在了Dockerfile中用于构建容器。 CMD:The main purpose of a CMD is to provide defaults for an executing container. CMD的主要用途是为正在执行的容器提供默认值。也就是指定这个容…

如何用ArcGIS制作城市用地适应性评价

01概述 “城市用地适宜性评价是城市总体规划的一项重要前期工作,它首先对工程地质、社会经济和生态环境等要素进行单项用地适宜性评价,然后用地图叠加技术根据每个因子所占权重生成综合的用地适宜性评价结果,俗称“千层饼模式”。 做用地适…

外包干了4年,废了···

有一说一,外包没有给很高的薪资,是真不能干呀! 先说一下自己的情况,大专生,19年通过校招进入湖南某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了&#xff0…

tensorflow报错: DNN library is no found

错误描述 如上图在执行程序的时候,会出现 DNN library is no found 的报错 解决办法 这个错误基本上说明你安装的 cudnn有问题,或者没有安装这个工具。 首先检测一下你是否安装了 cudnn 进入CUDA_HOME下,也就是进入你的cuda的驱动的安装目…

rime中州韵小狼毫 联想词组 滤镜

教程目录:rime中州韵小狼毫须鼠管安装配置教程 保姆级教程 100增强功能配置教程 在 rime中州韵小狼毫 自定义词典 一文中,我们分享了如何在rime中州韵小狼毫须鼠管输入法中定义用户自定义词典;通过自定义词典,我们可以很方便的在…

ppt怎么录屏录音并且导出?好用录屏软件推荐

ppt已经成为了日常工作与学习中必不可少的工具,而ppt屏幕录制功能,可以方便用户将他人的演讲或视频中的内容记录下来,以便进一步学习与研究。录制ppt演示并将其导出为视频文件,可以帮助我们进行分享,但是很多人不知道p…

Qt QGraphicsItem获取鼠标位置对应图像坐标

本次使用了QGraphicsView来加载图像,然后给其设置了一个QGraphicsScene场景,再给场景添加了一个自定义的QGraphicsItem,在其中重写了paint事件,用来重绘图像。 正常情况时,QGraphicsItem上图像的有效区域QRect大小和QG…

深入探讨:开发连锁餐饮APP的关键技术要点

时下,开发一款功能强大、用户友好的连锁餐饮APP成为许多餐饮企业的当务之急。在本文中,我们将深入探讨开发连锁餐饮APP的关键技术要点,涵盖了前端、后端以及数据库等方面。 一、前端开发 前端是用户与APP交互的入口,因此设计良好…

低频信号发生器

前言 最近我快期末考试了,有点忙着复习。没时间写文章,不过学会了焊接 挺开心的所以买几套。 焊得怎么样这就是我们今天故事的主角“低频信号发生器”(由于要用到所以这是购买链接) 好,故事开始: 如何将…

基于WebRTC技术的EasyRTC视频云服务系统在线视频客服解决方案

一、需求分析 随着互联网技术的发展,视频客服也成为服务行业的标配体验,基于WebRTC实时通信技术,客服人员与用户可以建立实时双向的视频交互与沟通。借助视频客服功能可以更加直观地了解用户的需求,提高沟通效率,并帮…

手写一个starter来理解SpringBoot的自动装配

自动装配以及简单的解析源码 自动装配是指SpringBoot在启动的时候会自动的将系统中所需要的依赖注入进Spring容器中 我们可以点开SpringBootApplication这个注解来一探究竟 点开这个注解可以发现这些 我们点开SpringBootConfiguration这个注解 可以发现实际上SpringBootApp…

What is `@Repository` does?

Repository 是Spring注解,标识数据访问层组件(DAO, Data Access Object) 当一个类被标记为 Repository 时: 1、组件扫描与自动代理: Spring通过组件扫描(Component Scan)机制发现带有 Reposit…

@FunctionalSpringBootTest 和@SpringBootTest注解的区别

FunctionalSpringBootTest 和 SpringBootTest 是Spring框架中用于测试的两个不同注解。下面是它们之间的主要区别: 用途和范围: SpringBootTest:这个注解用于需要测试Spring应用程序上下文的场合。它会加载完整的应用程序上下文,适…

LitJson-Json字符串转对像时:整型与字符串或字符串转:整型进的类型不一致的处理

目录 问题描述上代码测试代码各位看官,打赏个1元吧 Json数据格式是大家在游戏开中常量用的一种数据格式,某种程度上可以说是必备的。对unity开发来说,LitJson这个json库应该是被使用最多的json库了。 问题描述 今天说要的其中的这个api: Jso…

Linux知识(未完成)

一、Linux 1.1 Linux 的应用领域 1.1.1 个人桌面领域的应用 此领域是 Linux 比较薄弱的环节但是随着发展,近几年 linux 在个人桌面领域的占有率在逐渐提高 1.1.2 服务器领域 linux 在服务器领域的应用是最高的 linux 免费、稳定、高效等特点在这里得到了很好的…

ioDraw在线图表工具 - 轻松制作专业图表,只需3步!

还在花大量时间手动画图表?还在为图表样式而烦恼?ioDraw为你提供一站式解决方案!ioDraw在线图表工具实现了AI自动生成图表,让你轻松制作专业图表,只需3步! 1. 录入数据 只需将你的数据告诉ioDraw AI助手&…

条款24:若所有参数皆需类型转换,请为此采用非成员函数

设计一个表示有理数的类时,允许从整数隐式转换为有理数是有用的: class Rational { public:Rational(int numerator 0, // 该构造函数没有explicit限制;int denominator 1); int numerator() const; int denominator() const; const Rational opera…