《动手学深度学习(PyTorch版)》笔记3.1

Chapter3 Linear Neural Networks

3.1 Linear Regression

3.1.1 Basic Concepts

我们通常使用 n n n来表示数据集中的样本数。对索引为 i i i的样本,其输入表示为 x ( i ) = [ x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ] ⊤ \mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)},...,x_n^{(i)}]^\top x(i)=[x1(i),x2(i),...,xn(i)],其对应的标签是 y ( i ) y^{(i)} y(i)

3.1.1.1 Linear Model

在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。当我们的输入包含 d d d个特征时,我们将预测结果 y ^ \hat{y} y^(通常使用“尖角”符号表示 y y y的估计值)表示为:

y ^ = w 1 x 1 + . . . + w d x d + b . \hat{y} = w_1 x_1 + ... + w_d x_d + b. y^=w1x1+...+wdxd+b.

将所有特征放到向量 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd中,并将所有权重放到向量 w ∈ R d \mathbf{w} \in \mathbb{R}^d wRd中,我们可以用点积形式来简洁地表达模型:

y ^ = w ⊤ x + b (1) \hat{y} = \mathbf{w}^\top \mathbf{x} + b \tag{1} y^=wx+b(1)

在式(1)中,向量 x \mathbf{x} x对应于单个数据样本的特征。用符号表示的矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d可以很方便地引用我们整个数据集的 n n n个样本。其中, X \mathbf{X} X的每一行是一个样本,每一列是一种特征。对于特征集合 X \mathbf{X} X,预测值 y ^ ∈ R n \hat{\mathbf{y}} \in \mathbb{R}^n y^Rn可以通过矩阵-向量乘法表示为:

y ^ = X w + b {\hat{\mathbf{y}}} = \mathbf{X} \mathbf{w} + b y^=Xw+b

给定训练数据特征 X \mathbf{X} X和对应的已知标签 y \mathbf{y} y,线性回归的目标是找到一组权重向量 w \mathbf{w} w和偏置 b b b:当给定从 X \mathbf{X} X的同分布中取样的新样本特征时,这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。

虽然我们相信给定 x \mathbf{x} x预测 y y y的最佳模型会是线性的,但我们很难找到一个有 n n n个样本的真实数据集,其中对于所有的 1 ≤ i ≤ n 1 \leq i \leq n 1in y ( i ) y^{(i)} y(i)完全等于 w ⊤ x ( i ) + b \mathbf{w}^\top \mathbf{x}^{(i)}+b wx(i)+b。无论我们使用什么手段来观察特征 X \mathbf{X} X和标签 y \mathbf{y} y,都可能会出现少量的观测误差。因此,即使确信特征与标签的潜在关系是线性的,我们也会加入一个噪声项来考虑观测误差带来的影响。

在开始寻找最好的模型参数(model parameters w \mathbf{w} w b b b之前,
我们还需要两个东西:

  • 一种模型质量的度量方式;
  • 一种能够更新模型以提高模型预测质量的方法。
3.1.1.2 Loss Function

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。
损失函数(loss function)能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。回归问题中最常用的损失函数是平方误差函数。当样本 i i i的预测值为 y ^ ( i ) \hat{y}^{(i)} y^(i),其相应的真实标签为 y ( i ) y^{(i)} y(i)时,
平方误差可以定义为以下公式:

l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 . l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2. l(i)(w,b)=21(y^(i)y(i))2.

常数 1 2 \frac{1}{2} 21不会带来本质的差别,但这样在形式上稍微简单一些(因为当我们对损失函数求导后常数系数为1)。由于训练数据集并不受我们控制,所以经验误差只是关于模型参数的函数。由于平方误差函数中的二次方项,估计值 y ^ ( i ) \hat{y}^{(i)} y^(i)和观测值 y ( i ) y^{(i)} y(i)之间较大的差异将导致更大的损失。为了度量模型在整个数据集上的质量,我们需计算在训练集 n n n个样本上的损失均值(也等价于求和)。

L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 . L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wx(i)+by(i))2.

在训练模型时,我们希望寻找一组参数( w ∗ , b ∗ \mathbf{w}^*, b^* w,b),这组参数能最小化在所有训练样本上的总损失。如下式:

w ∗ , b ∗ = argmin ⁡ w , b L ( w , b ) . \mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b}\ L(\mathbf{w}, b). w,b=w,bargmin L(w,b).

3.1.1.3 Analytical Solution

线性回归有解析解(analytical solution)。首先,我们将偏置 b b b合并到参数 w \mathbf{w} w中,合并方法是在包含所有参数的矩阵中附加一列。我们的预测问题是最小化 ∥ y − X w ∥ 2 \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 yXw2。这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。将损失关于 w \mathbf{w} w的导数设为0,即
X ⊤ X w = X ⊤ y \mathbf X^\top \mathbf{X}\mathbf{w}=\mathbf X^\top \mathbf{y} XXw=Xy
得到解析解:

w ∗ = ( X ⊤ X ) − 1 X ⊤ y \mathbf{w}^* = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y} w=(XX)1Xy

像线性回归这样的简单问题存在解析解,但并不是所有的问题都存在解析解。

3.1.1.4 Stochastic Gradient Descent

我们用到一种名为梯度下降(gradient descent)的方法,几乎可以优化所有深度学习模型。它通过不断地在损失函数递减的方向上更新参数来降低误差。

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值)关于模型参数的导数(在这里也可以称为梯度)。但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B,它是由固定数量的训练样本组成的。然后,我们计算小批量的平均损失关于模型参数的导数(也可以称为梯度)。最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

我们用下面的数学公式来表示这一更新过程,其中 w \mathbf{w} w x \mathbf{x} x都是向量, ∣ B ∣ |\mathcal{B}| B表示每个小批量中的样本数,称为批量大小(batch size)。
η \eta η表示学习率(learning rate)。

( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) . (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). (w,b)(w,b)BηiB(w,b)l(i)(w,b).

总而言之,算法的步骤如下:
(1)初始化模型参数的值,如随机初始化;
(2)从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。
对于平方损失和仿射变换,可以写成如下形式:

w ← w − η ∣ B ∣ ∑ i ∈ B ∂ w l ( i ) ( w , b ) = w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) ) (关于 w 的偏导) b ← b − η ∣ B ∣ ∑ i ∈ B ∂ b l ( i ) ( w , b ) = b − η ∣ B ∣ ∑ i ∈ B ( w ⊤ x ( i ) + b − y ( i ) ) (关于 b 的偏导) \begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \text{ (关于$\mathbf{w}$的偏导)}\\ b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \text{ (关于$b$的偏导)} \end{aligned} wbwBηiBwl(i)(w,b)=wBηiBx(i)(wx(i)+by(i)) (关于w的偏导)bBηiBbl(i)(w,b)=bBηiB(wx(i)+by(i)) (关于b的偏导)

批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。这些可以调整但不在训练过程中更新的参数称为超参数(hyperparameter)。调参(hyperparameter tuning)是选择超参数的过程。超参数通常是我们根据训练迭代结果来调整的,而训练迭代结果是在独立的验证数据集(validation dataset)上评估得到的。

在训练了预先确定的若干迭代次数后(或者直到满足某些其他停止条件后),我们记录下模型参数的估计值,表示为 w ^ , b ^ \hat{\mathbf{w}}, \hat{b} w^,b^。但是,即使我们的函数确实是线性的且无噪声,这些估计值也不会使损失函数真正地达到最小值。因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内非常精确地达到最小值。
线性回归恰好是一个在整个域中只有一个最小值的学习问题,但是对像深度神经网络这样复杂的模型来说,损失平面上通常包含多个最小值。深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集上的损失达到最小。事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失,这一挑战被称为泛化(generalization)。

3.1.1.5 Using Models for Prediction

给定特征估计目标的过程通常称为预测(prediction)或推断(inference)。但在统计学中,推断更多地表示基于数据集估计参数。

3.1.2 Vectorization Acceleration

在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。为了实现这一点,需要我们对计算进行矢量化,从而利用线性代数库,而不是在Python中编写开销高昂的for循环,即使用:

n = 10000
a = torch.ones([n])
b = torch.ones([n])
c=a+b

而不是:

c = torch.zeros(n)
for i in range(n):c[i] = a[i] + b[i]

3.1.3 Normal Distribution and Squared Loss

噪声正态分布如下式:

y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,

其中, ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}(0, \sigma^2) ϵN(0,σ2)

因此,我们现在可以写出通过给定的 x \mathbf{x} x观测到特定 y y y似然(likelihood):

P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) . P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right). P(yx)=2πσ2 1exp(2σ21(ywxb)2).

现在,根据极大似然估计法,参数 w \mathbf{w} w b b b的最优值是使整个数据集的似然最大的值:

P ( y ∣ X ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) . P(\mathbf y \mid \mathbf X) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}). P(yX)=i=1np(y(i)x(i)).

根据极大似然估计法选择的估计量称为极大似然估计量。虽然使许多指数函数的乘积最大化看起来很困难,但是我们可以在不改变目标的前提下,通过最大化似然对数来简化。由于历史原因,优化通常是说最小化而不是最大化。我们可以改为最小化负对数似然 − log ⁡ P ( y ∣ X ) -\log P(\mathbf y \mid \mathbf X) logP(yX)。由此可以得到的数学公式是:

− log ⁡ P ( y ∣ X ) = ∑ i = 1 n 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 . -\log P(\mathbf y \mid \mathbf X) = \sum_{i=1}^n \frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2. logP(yX)=i=1n21log(2πσ2)+2σ21(y(i)wx(i)b)2.

现在我们只需要假设 σ \sigma σ是某个固定常数就可以忽略第一项,现在第二项除了常数 1 σ 2 \frac{1}{\sigma^2} σ21外,其余部分和前面介绍的均方误差是一样的。因此,在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

3.1.4 From Linear Regression to Deep Networks

我们可以用描述神经网络的方式来描述线性模型,从而把线性模型看作一个神经网络。
在这里插入图片描述

首先,我们用“层”符号来重写这个模型。深度学习从业者喜欢绘制图表来可视化模型中正在发生的事情。我们将线性回归模型描述为一个神经网络。需要注意的是,该图只显示连接模式,即只显示每个输入如何连接到输出,隐去了权重和偏置的值。
在图中所示的神经网络中,输入为 x 1 , … , x d x_1, \ldots, x_d x1,,xd,因此输入层中的输入数(或称为特征维度,feature dimensionality)为 d d d。网络的输出为 o 1 o_1 o1,因此输出层中的输出数是1。需要注意的是,输入值都是已经给定的,并且只有一个计算神经元。由于模型重点在发生计算的地方,所以通常我们在计算层数时不考虑输入层。也就是说,图中神经网络的层数为1。我们可以将线性回归模型视为仅由单个人工神经元组成的神经网络,或称为单层神经网络。对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连,我们将这种变换( 图中的输出层)称为全连接层(fully-connected layer)或称为稠密层(dense layer)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246977.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s学习-DaemonSet和Job

1.1DaemonSet是什么 Deployment部署的副本Pod会分布在各个Node上,每个Node都可能运行好几个副本。DaemonSet的不同之处在于:每个Node上最多只能运行⼀个副本。DaemonSet的典型应用场景有: (1)在集群的每个节点上运⾏存…

可解释性人工智能(XAI)概述

文章目录 每日一句正能量前言可解释性人工智能(XAI)定义研究的作用应用领域XAI的目标后记 每日一句正能量 一个人若想拥有聪明才智,便需要不断地学习积累。 前言 人工智能(AI)的发展速度迅猛,并在许多领域…

HarmonyOS鸿蒙学习基础篇 - 通用事件

一、引言 HarmonyOS鸿蒙是华为推出的分布式操作系统,旨在为各种智能设备提供统一的操作系统。鸿蒙系统的一大特色是其强大的分布式能力,而通用事件则是实现这一能力的关键技术之一,本篇博客将介绍HarmonyOS鸿蒙中的通用事件。 二、 点击事件…

怎样自行搭建幻兽帕鲁游戏联机服务器?

幻兽帕鲁是一款深受玩家喜爱的多人在线游戏,为了获取更好的游戏体验,许多玩家希望能够自行搭建幻兽帕鲁游戏联机服务器,本文将指导大家如何自行搭建幻兽帕鲁游戏联机服务器。 自行搭建幻兽帕鲁游戏联机服务器,阿里云是一个不错的选…

Web 鼠标滑过有粒子掉落

最近在写接口&#xff0c;反正环境也有了&#xff0c;无聊写点代码 <!DOCTYPE html> <html><head><meta http-equiv"Content-Type" content"text/html; charsetUTF-8"><title>粒子效果</title><style>body {ma…

Linux——进程间通信(共享内存)

目录 system V共享内存 ​编辑 共享内存函数 共享内存的建立过程 shmget函数 shmctl函数 shmat函数 shmdt函数 实例代码 共享内存的特点 system V共享内存 共享内存区是最快的IPC形式。一旦这样的内存映射到共享它的进程的地址空间&#xff08;即内存通过某种映射关…

小电影网站上线之nginx配置不带www域名301重定向到www域名+接入腾讯云安全防护edgeone

背景 写了个电影网站&#xff08;纯粹搞着玩的&#xff09;&#xff0c;准备买个域名然后上线&#xff0c;但是看日志经常被一些恶意IP进行攻击&#xff0c;这里准备接入腾讯云的安全以及加速产品edgeone&#xff0c;记录下当时的步骤。 一、nginx配置重定向以及日志格式 ng…

webpack常用配置

1.webpack概念 ​ 本质上&#xff0c;webpack 是一个用于现代 JavaScript 应用程序的 静态模块打包工具。当 webpack 处理应用程序时&#xff0c;它会在内部从一个或多个入口点构建一个 依赖图(dependency graph)&#xff0c;然后将你项目中所需的每一个模块组合成一个或多个 …

IDEA远程服务器开发

IDEA的远程开发是在本地去操远程服务器上的代码&#xff0c;可以直接将本地代码的编译,构建,调试,运行等工作都放在远程服务器上而本地运行一个客户端远程去操作服务器上的代码,就如同我们平常写代码一样。相比于云桌面成本更低,开发效率更高。 1.首先服务器配置jdk&#xff0…

win10通过ssh链接deepin23并开启x11转发

前提 主机环境&#xff1a;win10 lstc 虚拟机环境&#xff1a;deepin23beta2 终端&#xff1a;tabby x11服务器: vcxsrv 安装ssh sudo apt install ssh开启root登录(看你需求&#xff09; 首先你要给root账号设置密码 sudo passwd root修改配置文件 sudo vim /etc/ssh/ss…

gitee仓库使用中的警告

当 Git 执行 git pull 命令时&#xff0c;有时候会出现类似下面的警告信息&#xff1a; warning: ----------------- SECURITY WARNING ---------------- warning: | TLS certificate verification has been disabled! | warning: ------------------------------------------…

ASP.NET Core WebAPI从HTTPS调整为HTTP启动

使用VS2022创建WebAPI项目时&#xff0c;默认勾选“配置HTTPS(H)”&#xff0c;这样启动WebAPI时以https方式启动。   如果要从HTTPS调整为HTTP启动&#xff0c;需要修改项目中以下几处&#xff0c;首先是Program.cs中删除app.UseHttpsRedirection()语句&#xff0c;删除后…

数据结构与算法:复杂度

友友们大家好啊&#xff0c;今天开始正式学习数据结构与算法有关内容&#xff0c;后续不断更新数据结构有关知识内容&#xff0c;希望多多支持&#xff01; 数据结构&#xff1a; 数据结构是用于存储和组织数据的方式&#xff0c;以便可以有效地访问和修改数据。不同的数据结构…

E5071C 是德科技网络分析仪

181/2461/8938产品概述&#xff1a; E5071C ENA 矢量网络分析仪&#xff0c;9 kHz 至 20 GHz&#xff0c;配有增强型 TDR 测量选件。 E5071C 是大规模无源元器件测试的理想解决方案。 它具有出色的测量性能&#xff0c;有助于提高测试吞吐量&#xff0c;尤其是与 E5092A 多端…

REVIT二次开发万能刷

将这两个参数赋予其他参数 步骤2 将来做个可以调控的版本 using System; using System.Collections.Generic; using System.Lin

C动态内存那些事

为什么存在动态内存分配&#xff1f; 首先&#xff0c;动态内存分配是计算机中一种重要的内存管理方法&#xff0c;它主要解决了静态内存分配无法灵活应对变化需求的问题。以下是几个存在动态内存分配的原因&#xff1a; 灵活性&#xff1a;动态内存分配允许程序在运行时根据需…

Allure 内置特性

章节目录&#xff1a; 一、内置特性概述二、展示环境信息三、测试结果分类四、用例步骤说明五、添加附件六、添加用例描述七、设置动态的用例标题八、报告中添加链接九、组织测试结果9.1 使用与理解9.2 指定运行 十、划分用例级别十一、动态生成附加信息十二、清空历史报告记录…

【GitHub项目推荐--如何构建项目】【转载】

这是一个 138K Star 的开源项目&#xff0c;这个仓库汇集了诸多优质资源&#xff0c;教你如何构建一些属于自己的东西&#xff0c;内容主要分为增强现实、区块链、机器人、编辑器、命令行工具、神经网络、操作系统等几大类别。 开源地址&#xff1a;https://github.com/danist…

vue 样式隔离原理

日常写单文件组件时&#xff0c;会在style添加scoped属性&#xff0c;如<style scoped>&#xff0c;目的是为了隔离组件与组件之间的样式&#xff0c;如下面的例子&#xff1a; <template><p class"foo">这是foo</p><p class"bar&q…

ubuntu下docker卸载和重新安装

卸载&#xff1a;步骤一&#xff1a;停止Docker服务 首先&#xff0c;我们需要停止正在运行的Docker服务。打开终端&#xff0c;执行以下命令&#xff1a; sudo systemctl stop docker 步骤二&#xff1a;删除Docker安装包 接下来&#xff0c;我们需要删除已经安装的Docker软件…