【数据分享】1929-2023年全球站点的逐日降水量数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,说到常用的降水数据,最详细的降水数据是具体到气象监测站点的降水数据!

有关气象指标的监测站点数据,之前我们分享过1929-2023年全球气象站点的逐日平均气温数据、逐日最高气温数据、逐日最低气温数据逐日降雪深度数据和逐日平均能见度数据(均可查看之前的文章获悉详情)。本次我们为大家继续带来具体到气象监测站点的数据——1929-2023年全球气象站点的逐日降水量数据!

原始数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),原始数据以英寸为单位,数据格式为csv,缺失数据用99.99表示。为了方便大家使用,我们对原始数据进行了一些处理,包括:①降水单位转为毫米;②处理得到了shp和excel两种数据格式;③对于excel格式,将缺失数据表示为空值,对于shp格式,缺失值仍用99.99表示。该数据的其他重要信息包括数据坐标为GCS_WGS_1984,以2023年为例全球有12311个气象观测站点,具体的数据处理方式会在下文详细介绍!

大家可以在公众号回复关键词 133 免费获取该数据!无需转发文章,直接获取!以下为数据的详细介绍:

01 数据预览

该数据提供Shp和Excel两种数据格式,由于是逐日降水量数据,又有95多个年份,数据条数非常多,难以将所有年份保存在一个文件中。我们将每一年的数据保存为一个Shp文件和一个Excel文件,一共有95个年份,也就是有95个Shp文件和95个Excel文件。

我们先来看一下Excel格式的数据,每个Excel文件中包含有该年365天每天的全球所有气象站点的降水量。

数据字段包括气象观测站点的编号(STATION)气象观测站点的名称(NAME)、纬度(LATITUDE)经度(LONGITUDE)以及每日降水量数值(例如2023-01-01)。我们来预览一下:

接下来我们来看一下Shp格式的数据,同样每个Shp文件中都包含该年365天每天的全球所有气象站点的降水量。

Shp格式数据的具体属性和Excel数据相同,我们以2023年气象观测站点的每日降水量数据为例来预览一下:

2023年气象观测站点空间分布

02 数据来源

数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),网址为:https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/,包括了1929—2023年的气象数据,大家可以自己去该网站下载原始数据!

03 数据处理说明

1.合并处理:

从NCEI网站下载到的原始csv数据,每一个csv是某个特定站点1年内所有日期的总降水量数据,按天记录,但并不全是365天,有的300多天,有的只有十几天。我们按照年份将每年涉及到的所有气象观测站点的每日总降水量数据进行合并处理,最终得到以年份命名的1929-2023年全球范围气象站点的逐日总降水量数据。

2.单位换算:

原始数据单位为英寸(in),根据公式1英寸=25.4毫米,将英寸换算为毫米(mm)。

3.站点数量说明:

每一年的站点数并不相同,基本是越新的年份全球气象站点数越多,2023年有12311个,早些年份的气象站点较少。有一点需要注意,对于缺失经纬度信息的站点,Excel中进行保留,其经纬度信息为空值。Shp中则将缺失经纬度信息的站点进行了删除。所以存在Excel和Shp中站点数量不一致的情况,例如2023年Shp中的站点个数为12270,Excel中的站点数量为12311。

4.空值处理:

原始csv数据中的缺失值用数字99.99表示!在处理时,Excel格式文件用空值表示数据缺失;由于Shp文件会自动把空值识别为0,为区分空值与0毫米降水量,Shp中仍用数字99.99表示数据缺失,特此说明!

5.降水量说明:

①对于PRCP降水量指标,存在着数值为0和空值的情况!其中:数值为0的,解释为气象站没有报告当天的任何降水数据,也没有在每小时的观测中报告任何降水情况。需要说明的是也可能存在发生了降水,但没有报告的情况。

②对于空值,原始降水数据一个csv文件是一个站点的所有天的数据,但是并不365天都有,原始数据里面没有空值。处理后为什么会有空值呢?因为是所有站点的逐日数据都放在一个csv里面,比如站点A没有6月1号,但站点B有,那么6月1号的站点A就是空值。

03 数据获取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/252962.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——C/栈和队列

🌈个人主页:慢了半拍 🔥 创作专栏:《史上最强算法分析》 | 《无味生》 |《史上最强C语言讲解》 | 《史上最强C练习解析》 🏆我的格言:一切只是时间问题。 ​ 1.栈 1.1栈的概念及结构 栈:一种特…

【Linux】线程Pthread的概念 | NPTL线程库函数

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;Linux系列专栏&#xff1a;Linux基础 &#x1f525; 给大家…

麒麟信安连续两年获评信创工委会“卓越贡献成员单位”荣誉称号

近日&#xff0c;中国电子工业标准化技术协会信息技术应用创新工作委员会&#xff08;以下简称信创工委会&#xff09;向麒麟信安授予2023年度“卓越贡献成员单位”荣誉称号并发来感谢信。 信中对2023 年麒麟信安在信创工委会发展中作出的重要贡献表示衷心感谢&#xff0c;并表…

Camunda流程引擎数据库架构

&#x1f496;专栏简介 ✔️本专栏将从Camunda(卡蒙达) 7中的关键概念到实现中国式工作流相关功能。 ✔️文章中只包含演示核心代码及测试数据&#xff0c;完整代码可查看作者的开源项目snail-camunda ✔️请给snail-camunda 点颗星吧&#x1f618; &#x1f496;数据库架构…

【SpringBoot篇】解决Redis分布式锁的 误删问题 和 原子性问题

文章目录 &#x1f354;Redis的分布式锁&#x1f6f8;误删问题&#x1f388;解决方法&#x1f50e;代码实现 &#x1f6f8;原子性问题&#x1f339;Lua脚本 ⭐利用Java代码调用Lua脚本改造分布式锁&#x1f50e;代码实现 &#x1f354;Redis的分布式锁 Redis的分布式锁是通过利…

Linux 文件比较工具

在Linux系统中&#xff0c;文件比较是一种常见的任务&#xff0c;用于比较两个文件之间的差异。文件比较可以帮助我们找出两个文件的不同之处&#xff0c;或者确定它们是否完全相同。在Linux中&#xff0c;有多种方法可以进行文件比较。 1. diff 在Linux中&#xff0c;diff命…

数字孪生:智慧城市的核心技术与发展

一、引言 随着城市化进程的加速&#xff0c;智慧城市的概念和实践逐渐成为全球关注的焦点。智慧城市利用先进的信息通信技术&#xff0c;提升城市治理水平&#xff0c;改善市民的生活质量。而数字孪生作为智慧城市的核心技术&#xff0c;为城市管理、规划、应急响应等方面提供…

python coding with ChatGPT 打卡第17天| 二叉树:找树左下角的值、路径总和

相关推荐 python coding with ChatGPT 打卡第12天| 二叉树&#xff1a;理论基础 python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历 python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历 python coding with ChatGPT 打卡第15天| 二叉树&#xff1a;翻转…

远程主机可能不符合glibc和libstdc++ VS Code服务器的先决条件

报错信息 VSCode无法连接远程服务器&#xff0c;终端一直提醒&#xff1a; [22:46:01.906] > Waiting for server log... [22:46:01.936] > Waiting for server log... [22:46:01.951] > [22:46:01.967] > Waiting for server log... [22:46:01.982] > [22:…

[每周一更]-(第85期):NLP-实战操作-文本分类

NLP文本分类的应用场景 医疗领域 - 病历自动摘要&#xff1a; 应用&#xff1a; 利用NLP技术从医疗文档中自动生成病历摘要&#xff0c;以帮助医生更快速地了解患者的状况。 法律领域 - 法律文件分类&#xff1a; 应用&#xff1a; 使用文本分类技术自动分类法律文件&#xf…

人工智能|深度学习——基于全局注意力的改进YOLOv7-AC的水下场景目标检测系统

代码下载&#xff1a; 基于全局注意力的改进YOLOv7-AC的水下场景目标检测系统.zip资源-CSDN文库 1.研究的背景 水下场景目标检测是水下机器人、水下无人机和水下监控等领域中的重要任务之一。然而&#xff0c;由于水下环境的复杂性和特殊性&#xff0c;水下目标检测面临着许多挑…

MCU+SFU视频会议一体化,视频监控,指挥调度(AR远程协助)媒体中心解决方案。

视频互动应用已经是政务和协同办公必备系统&#xff0c;早期的分模块&#xff0c;分散的视频应该不能满足业务需要&#xff0c;需要把视频监控&#xff0c;会议&#xff0c;录存一体把视频资源整合起来&#xff0c;根据客户需求&#xff0c;需要能够多方视频互动&#xff0c;直…

WebSocket基础详解

文章目录 前言由来简介优缺点适用场景兼容性 API介绍构造函数实例方法send()close() 实例属性ws.readyState&#xff08;只读&#xff09;ws.bufferedAmount&#xff08;只读&#xff09;ws.binaryTypeextensions&#xff08;只读&#xff09;protocol&#xff08;只读&#xf…

JVM内存分析与优化

JVM内存模型分析 在minor gc过程中对象挪动后&#xff0c;引用如何修改&#xff1f; 对象在堆内部挪动的过程其实是复制&#xff0c;原有区域对象还在&#xff0c;一般不直接清理&#xff0c;JVM内部清理过程只是将对象分配指针移动到区域的头位置即可&#xff0c;比如扫描s0区…

Springboot 整合 Elasticsearch(三):使用RestHighLevelClient操作ES ①

&#x1f4c1; 前情提要&#xff1a; Springboot 整合 Elasticsearch&#xff08;一&#xff09;&#xff1a;Linux下安装 Elasticsearch 8.x Springboot 整合 Elasticsearch&#xff08;二&#xff09;&#xff1a;使用HTTP请求来操作ES 目录 一、Springboot 整合 Elasticsea…

机器学习系列——(十六)回归模型的评估

引言 在机器学习领域&#xff0c;回归模型是一种预测连续数值输出的重要工具。无论是预测房价、股票价格还是天气温度&#xff0c;回归模型都扮演着不可或缺的角色。然而&#xff0c;构建模型只是第一步&#xff0c;评估模型的性能是确保模型准确性和泛化能力的关键环节。本文…

双向链表的插入、删除、按位置增删改查、栈和队列区别、什么是内存泄漏

2024年2月4日 1.请编程实现双向链表的头插&#xff0c;头删、尾插、尾删 头文件&#xff1a; #ifndef __HEAD_H__ #define __HEAD_H__ #include<stdio.h> #include<stdlib.h> #include<string.h> typedef int datatype; enum{FALSE-1,SUCCSE}; typedef str…

Python进阶--爬取下载人生格言(基于格言网的Python3爬虫)

目录 一、此处需要安装第三方库: 二、抓包分析及Python代码 1、打开人生格言网&#xff08;人生格言-人生格言大全_格言网&#xff09;进行抓包分析 2、请求模块的代码 3、抓包分析人生格言界面 4、获取各种类型的人生格言链接 5、获取下一页的链接 6、获取人生格言的…

【并发编程】手写线程池阻塞队列

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;并发编程 ⛺️稳重求进&#xff0c;晒太阳 示意图 步骤1&#xff1a;自定义任务队列 变量定义 用Deque双端队列来承接任务用ReentrantLock 来做锁并声明两个条件变量 Condition fullWai…

【wu-lazy-cloud-network】Java自动化内网穿透

项目介绍 wu-lazy-cloud-network 是一款基于&#xff08;wu-framework-parent&#xff09;孵化出的项目&#xff0c;内部使用Lazy ORM操作数据库&#xff0c;主要功能是网络穿透&#xff0c;对于没有公网IP的服务进行公网IP映射 使用环境JDK17 Spring Boot 3.0.2 功能 1.内网…