机器学习--K-近邻算法常见的几种距离算法详解

文章目录

  • 距离度量
    • 1 欧式距离(Euclidean Distance)
    • 2 曼哈顿距离(Manhattan Distance)
    • 3 切比雪夫距离 (Chebyshev Distance)
    • 4 闵可夫斯基距离(Minkowski Distance)
    • 5 标准化欧氏距离 (Standardized EuclideanDistance)
    • 6 余弦距离(Cosine Distance)
    • 7 汉明距离(Hamming Distance)【了解】
    • 8 杰卡德距离(Jaccard Distance)【了解】
    • 9 马氏距离(Mahalanobis Distance)【了解】
    • 10 “连续属性”和“离散属性”的距离计算

距离度量

距离公式的基本性质
在机器学习过程中,对于函数dist(…),若它是一"距离度量"(distance measure),则需要满足一些基本性质
在这里插入图片描述

1 欧式距离(Euclidean Distance)

欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。
在这里插入图片描述

举例:
X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 1.4142 2.8284 4.2426 1.4142 2.8284 1.4142

2 曼哈顿距离(Manhattan Distance)

在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。
这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。
在这里插入图片描述
在这里插入图片描述

举例:
X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 2 4 6 2 4 2

3 切比雪夫距离 (Chebyshev Distance)

国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。
国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离。
在这里插入图片描述
在这里插入图片描述

举例:

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 1 2 3 1 2 1

4 闵可夫斯基距离(Minkowski Distance)

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:
在这里插入图片描述

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

1 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

2 闵氏距离的缺点:

​ (1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

​ (2)未考虑各个分量的分布(期望,方差等)可能是不同的。

5 标准化欧氏距离 (Standardized EuclideanDistance)

标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。​ $S_k$表示各个维度的标准差

在这里插入图片描述

如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。

举例:
X=[[1,1],[2,2],[3,3],[4,4]];(假设两个分量的标准差分别为0.5和1)
经计算得:
d = 2.2361 4.4721 6.7082 2.2361 4.4721 2.2361

6 余弦距离(Cosine Distance)

几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。

二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:
在这里插入图片描述

两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦为:
在这里插入图片描述

即:
在这里插入图片描述

夹角余弦取值范围为[-1,1]。余弦越大表示两个向量的夹角越小,余弦越小表示两向量的夹角越大。当两个向量的方向重合时余弦取最大值1,当两个向量的方向完全相反余弦取最小值-1。

举例:

X=[[1,1],[1,2],[2,5],[1,-4]]
经计算得:
d = 0.9487 0.9191 -0.5145 0.9965 -0.7593 -0.8107

7 汉明距离(Hamming Distance)【了解】

两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。用在NLP中比较多

例如:
The Hamming distance between “1011101” and “1001001” is 2.
The Hamming distance between “2143896” and “2233796” is 3.
The Hamming distance between “toned” and “roses” is 3.
在这里插入图片描述

汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。

应用:汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。

举例:

X=[[0,1,1],[1,1,2],[1,5,2]]
注:以下计算方式中,把2个向量之间的汉明距离定义为2个向量不同的分量所占的百分比。

经计算得:
d = 0.6667 1.0000 0.3333

8 杰卡德距离(Jaccard Distance)【了解】

杰卡德相似系数(Jaccard similarity coefficient):两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示:
在推荐系统里面用的比较多
在这里插入图片描述

杰卡德距离(Jaccard Distance):与杰卡德相似系数相反,用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度:
在这里插入图片描述

举例:

X=[[1,1,0][1,-1,0],[-1,1,0]]
注:以下计算中,把杰卡德距离定义为不同的维度的个数占“非全零维度”的比例
经计算得:
d = 0.5000 0.5000 1.0000

9 马氏距离(Mahalanobis Distance)【了解】

下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。
在这里插入图片描述

马氏距离是基于样本分布的一种距离。

马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。它是一种有效的计算两个位置样本集的相似度的方法。

与欧式距离不同的是,它考虑到各种特性之间的联系,即独立于测量尺度。

马氏距离定义:设总体G为m维总体(考察m个指标),均值向量为μ=(μ1,μ2,… …,μm,)`,协方差阵为∑=(σij),

则样本X=(X1,X2,… …,Xm,)`与总体G的马氏距离定义为:
在这里插入图片描述

马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为∑的随机变量的差异程度:如果协方差矩阵为单位矩阵,马氏距离就简化为欧式距离;如果协方差矩阵为对角矩阵,则其也可称为正规化的欧式距离。

马氏距离特性:

1.量纲无关,排除变量之间的相关性的干扰;

2.马氏距离的计算是建立在总体样本的基础上的,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;

3 .计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。

4.还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6),(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。

欧式距离&马氏距离:
在这里插入图片描述

举例:

已知有两个类G1和G2,比如G1是设备A生产的产品,G2是设备B生产的同类产品。设备A的产品质量高(如考察指标为耐磨度X),其平均耐磨度μ1=80,反映设备精度的方差σ2(1)=0.25;设备B的产品质量稍差,其平均耐磨损度μ2=75,反映设备精度的方差σ2(2)=4.

今有一产品G0,测的耐磨损度X0=78,试判断该产品是哪一台设备生产的?

直观地看,X0与μ1(设备A)的绝对距离近些,按距离最近的原则,是否应把该产品判断设备A生产的?

考虑一种相对于分散性的距离,记X0与G1,G2的相对距离为d1,d2,则:
在这里插入图片描述

因为d2=1.5 < d1=4,按这种距离准则,应判断X0为设备B生产的。

设备B生产的产品质量较分散,出现X0为78的可能性较大;而设备A生产的产品质量较集中,出现X0为78的可能性较小。

这种相对于分散性的距离判断就是马氏距离。
在这里插入图片描述

10 “连续属性”和“离散属性”的距离计算

我们常将属性划分为“连续属性(continuous attribute)和"离散属性(categorical attribute),前者在定义域上有无穷多个可能的取值,后者在定义域上是有限个取值
若属性值之间存在序关系,则可以将其转化为连续值,例如: 身高属性“高”“中等”“矮”,可转化为(1,0.5,0}。
闵可夫斯基距离可以用于有序属性。
若属性值之间不存在序关系,则通常将其转化为向量的形式,例如:性别属性“男”“女””,可转化为{ (1,0) ,(0,1) }。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254079.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

14.scala隐式转换

目录 概述实践代码执行结果 结束 概述 隐式转换&#xff1a;偷偷的(隐式)对现有功能进行增强(转换) 实践 代码 package com.fun.scalaimport java.io.File import scala.io.Sourceobject ImplicitApp {def main(args: Array[String]): Unit {// implicit 2 to 等价 &…

K8S之Pod常见的状态和重启策略

Pod常见的状态和重启策略 常见的Pod状态PendingPodScheduledUnschedulablePodInitializingImagePullBackOffInitializedRunningErrorCrashLoopBackOffTerminatingSucceededFailedEvictedUnknown Pod的重启策略使用Always重启策略使用Never重启策略使用OnFailure重启策略(常用) …

go消息队列RabbitMQ - 订阅模式-direct

1.发布订阅 在Fanout模式中&#xff0c;一条消息&#xff0c;会被所有订阅的队列都消费。但是&#xff0c;在某些场景下&#xff0c;我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。 在Direct模型下&#xff1a; 队列与交换机的绑定&#xff0c;不能…

NuxtJs安装Sass后出现ERROR:Cannot find module ‘webpack/lib/RuleSet‘

最近了解NuxtJs时&#xff0c;发现问题比较多&#xff0c;对于初学者来说是件比较头痛的事。这次是安装sass预处理器&#xff0c;通过命令安装后&#xff0c;出现了ERROR&#xff1a;Cannot find module webpack/lib/RuleSet 错误&#xff0c;于是根据之前经验&#xff0c;对版…

解析spritf和sscanf与模拟常用字符串函数strchr,strtok(二)

今天又来继续我们的字符串函数的文章&#xff0c;这也是最后一篇了。希望这两篇文章能让各位理解透字符串函数。 目录 strchr strtok sprintf和sscanf strchr strchr 是一个用于在字符串中查找特定字符首次出现位置的函数。以下是解析和模拟实现 strchr 函数的示例&…

在Visual Studio中引用和链接OpenSceneGraph (OSG) 库

在Visual Studio中引用和链接OpenSceneGraph (OSG) 库&#xff0c;按照以下步骤操作&#xff1a; 构建或安装OSG库 下载OpenSceneGraph源代码&#xff08;如3.0版本&#xff09;并解压。使用CMake配置项目&#xff0c;为Visual Studio生成解决方案文件。通常您需要设置CMake中的…

Bee+SpringBoot稳定的Sharding、Mongodb ORM功能(同步 Maven)

Hibernate/MyBatis plus Sharding JDBC Jpa Spring data GraphQL App ORM (Android, 鸿蒙) Bee 小巧玲珑&#xff01;仅 860K, 还不到 1M, 但却是功能强大&#xff01; V2.2 (2024春节・LTS 版) 1.Javabean 实体支持继承 (配置 bee.osql.openEntityCanExtendtrue) 2. 增强批…

Spring Boot + 七牛OSS: 简化云存储集成

引言 Spring Boot 是一个非常流行的、快速搭建应用的框架&#xff0c;它无需大量的配置即可运行起来&#xff0c;而七牛云OSS提供了稳定高效的云端对象存储服务。利用两者的优势&#xff0c;可以为应用提供强大的文件存储功能。 为什么选择七牛云OSS? 七牛云OSS提供了高速的…

PCIE Order Set

1 Training Sequence Training Sequence是由Order Set(OS) 组成&#xff0c;它们主要是用于bit aligment&#xff0c;symbol aligment&#xff0c;交换物理层的参数。当data_rate 2.5GT or 5GT 它们不会被扰码(scramble)&#xff0c;当date_rate 8GT or higher 根据特殊的规则…

第59讲订单数据下拉实现

import com.baomidou.mybatisplus.extension.plugins.pagination.Page;/*** 订单查询 type值 0 全部订单 1待付款 2 待收货 3 退款/退货* param type* return*/RequestMapping("/list")public R list(Integer type,Integer page,Integer pageSize){System.out.pri…

Golang数据库编程详解 | 深入浅出Go语言原生数据库编程

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。 Golang学习专栏&#xff1a;https://blog.csdn.net/qq_35716689/category_12575301.html 前言 对数据库…

Vue3编写简单的App组件(二)

一、Vue3页面渲染基本流程 1、入口文件 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><link rel"icon" href"/favicon.ico"><meta name"viewport" content"widthde…

es6中标签模板

之所以写这篇文章&#xff0c;是因为标签模板是一个很容易让人忽略的知识点 首先我们已经非常熟悉模板字符串的使用方法 const name "诸葛亮" const templateString hello, My name is ${name}标签模板介绍 这里的标签模板其实不是模板&#xff0c;而是函数调用…

【CV论文精读】【MVDet】Multiview Detection with Feature Perspective Transformation

0.论文摘要 合并多个摄像机视图进行检测减轻了拥挤场景中遮挡的影响。在多视图检测系统中&#xff0c;我们需要回答两个重要问题。首先&#xff0c;我们应该如何从多个视图中聚合线索&#xff1f;第二&#xff0c;我们应该如何从空间上相邻的位置聚集信息&#xff1f;为了解决…

Java项目管理01-Maven基础

一、Maven的常用命令和生命周期 1.Maven的常用命令使用方式 complie&#xff1a;编译&#xff0c;将java文件编译为class字节码文件 clean&#xff1a;清理&#xff0c;删除字节码文件 test&#xff1a;测试&#xff0c;运行项目中的test类 package&#xff1a;打包&#x…

Leetcode 45. 跳跃游戏 II

本题与55. 跳跃游戏十分类似&#xff0c;区别在于本题是要求出最小的跳跃次数。 在55. 跳跃游戏的框架上&#xff0c;我们需要增加一些东西&#xff1a; 既然要计算最小跳跃次数&#xff0c;就需要用一个变量计数跳跃的次数&#xff1b;需要一次前瞻&#xff0c;来计算之后那次…

3.1 Verilog 连续赋值

关键词&#xff1a;assign&#xff0c; 全加器 连续赋值语句是 Verilog 数据流建模的基本语句&#xff0c;用于对 wire 型变量进行赋值。&#xff1a; 格式如下 assign LHS_target RHS_expression &#xff1b; LHS&#xff08;left hand side&#xff09; 指赋值操作…

圣诞节酷炫特效合集【含十几个HTML+CSS前端特效+34个桌面酷炫圣诞程序】

写在前面 ❤️源码获取:订阅后见文末 ❤️内容介绍:包含HTML+CSS等十几个圣诞特效;以及三十四个桌面酷炫圣诞树合集 ❤️订阅后所得如下: ❤️HTML圣诞+桌面圣诞程序效果如下: 下方展示代码仅举例其中几个 所有效果源码及文件订阅后找博主获取即可 🎄css3圣诞雪人动…

大模型2024规模化场景涌现,加速云计算走出第二增长曲线

导读&#xff1a;2024&#xff0c;大模型第一批规模化应用场景已出现。 如果说“百模大战”是2023年国内AI产业的关键词&#xff0c;那么2024年我们将正式迈进“应用为王”的新阶段。 不少业内观点认为&#xff0c;2024年“百模大战”将逐渐收敛甚至洗牌&#xff0c;而大模型在…

PHPExcel导出excel

PHPExcel下载地址 https://gitee.com/mirrors/phpexcelhttps://github.com/PHPOffice/PHPExcel 下载后目录结构 需要的文件如下图所示 将上面的PHPExcel文件夹和PHPExcel.php复制到你需要的地方 这是一个简单的示例代码 <?php$dir dirname(__FILE__); //require_once …