Spark编程实验六:Spark机器学习库MLlib编程

目录

一、目的与要求

二、实验内容

三、实验步骤

1、数据导入

2、进行主成分分析(PCA)

3、训练分类模型并预测居民收入 

4、超参数调优

四、结果分析与实验体会


一、目的与要求

1、通过实验掌握基本的MLLib编程方法;
2、掌握用MLLib解决一些常见的数据分析问题,包括数据导入、成分分析和分类和预测等。

二、实验内容

1.数据导入

        从文件中导入数据,并转化为DataFrame。

2、进行主成分分析(PCA

        对6个连续型的数值型变量进行主成分分析。PCA(主成分分析)是通过正交变换把一组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过setK()方法将主成分数量设置为3,把连续型的特征向量转化成一个3维的主成分。

3、训练分类模型并预测居民收入

        在主成分分析的基础上,采用逻辑斯蒂回归,或者决策树模型预测居民收入是否超过50K;对Test数据集进行验证。

4、超参数调优

        利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等。

附:数据集:

        下载Adult数据集(http://archive.ics.uci.edu/ml/datasets/Adult)。数据从美国1994年人口普查数据库抽取而来,可用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄、工种、学历、职业、人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。

Index.txt文件内容: 

Index of adult

02 Dec 1996      140 Index
10 Aug 1996  3974305 adult.data
10 Aug 1996     4267 adult.names
10 Aug 1996  2003153 adult.test

三、实验步骤

1、数据导入

        从文件中导入数据,并转化为DataFrame。

//导入需要的包
from pyspark.ml.feature import PCA 
from pyspark.sql import Row
from pyspark.ml.linalg import Vector,Vectors
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml import Pipeline,PipelineModel
from pyspark.ml.feature import IndexToString, StringIndexer, VectorIndexer,HashingTF, Tokenizer
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.classification import LogisticRegressionModel
from pyspark.ml.classification import BinaryLogisticRegressionSummary, LogisticRegression
from pyspark.sql import functions
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
//获取训练集测试集(需要对测试集进行一下处理,adult.data.txt的标签是>50K和<=50K,而adult.test.txt的标签是>50K.和<=50K.,这里是把adult.test.txt标签的“.”去掉了。另外,确保adult.data.txt和adult.test.txt最后没有多一个空格。)
>>> def f(x):rel = {}rel['features']=Vectors.dense(float(x[0]),float(x[2]),float(x[4]),float(x[10]),float(x[11]),float(x[12]))rel['label'] = str(x[14])return rel>>> df = spark.sparkContext.textFile("file:///usr/local/spark/adult.data.txt").map(lambda line: line.split(',')).map(lambda p: Row(**f(p))).toDF() 
df: pyspark.sql.DataFrame = [features: vector, label: string]>>> test = spark.sparkContext.textFile("file:///usr/local/spark/adult.test.txt").map(lambda line: line.split(',')).map(lambda p: Row(**f(p))).toDF()
test: pyspark.sql.DataFrame = [features: vector, label: string]

2、进行主成分分析(PCA)

        对6个连续型的数值型变量进行主成分分析。PCA(主成分分析)是通过正交变换把一组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过setK()方法将主成分数量设置为3,把连续型的特征向量转化成一个3维的主成分。

        构建PCA模型,并通过训练集进行主成分分解,然后分别应用到训练集和测试集。

>>> pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures").fit(df)
pca: pyspark.ml.feature.PCAModel = PCA_4a668f4a52beccad9526>>> result = pca.transform(df)
result: pyspark.sql.DataFrame = [features: vector, label: string, pcaFeatures: vector]>>> testdata = pca.transform(test)
testdata: pyspark.sql.DataFrame = [features: vector, label: string, pcaFeatures: vector] >>> result.show(truncate=False)
+------------------------------------+------+-----------------------------------------------------------+
|features                            |label |pcaFeatures                                                |
+------------------------------------+------+-----------------------------------------------------------+
|[39.0,77516.0,13.0,2174.0,0.0,40.0] | <=50K|[77516.0654328193,-2171.6489938846585,-6.9463604765987625] |
|[50.0,83311.0,13.0,0.0,0.0,13.0]    | <=50K|[83310.99935595776,2.526033892790795,-3.38870240867987]    |
|[38.0,215646.0,9.0,0.0,0.0,40.0]    | <=50K|[215645.99925048646,6.551842584546877,-8.584953969073675]  |
|[53.0,234721.0,7.0,0.0,0.0,40.0]    | <=50K|[234720.99907961802,7.130299808613842,-9.360179790809983]  |
|[28.0,338409.0,13.0,0.0,0.0,40.0]   | <=50K|[338408.9991883054,10.289249842810678,-13.36825187163136]  |
|[37.0,284582.0,14.0,0.0,0.0,40.0]   | <=50K|[284581.9991669545,8.649756033705797,-11.281731333793557]  |
|[49.0,160187.0,5.0,0.0,0.0,16.0]    | <=50K|[160186.99926937037,4.86575372118689,-6.394299355794958]   |
|[52.0,209642.0,9.0,0.0,0.0,45.0]    | >50K |[209641.99910851708,6.366453450443119,-8.38705558572268]   |
|[31.0,45781.0,14.0,14084.0,0.0,50.0]| >50K |[45781.42721110636,-14082.596953729324,-26.3035091053821]  |
|[42.0,159449.0,13.0,5178.0,0.0,40.0]| >50K |[159449.15652342222,-5173.151337268416,-15.351831002507415]|
|[37.0,280464.0,10.0,0.0,0.0,80.0]   | >50K |[280463.9990886109,8.519356755954709,-11.188000533447731]  |
|[30.0,141297.0,13.0,0.0,0.0,40.0]   | >50K |[141296.99942061215,4.2900981666986855,-5.663113262632686] |
|[23.0,122272.0,13.0,0.0,0.0,30.0]   | <=50K|[122271.9995362372,3.7134109235547164,-4.887549331279983]  |
|[32.0,205019.0,12.0,0.0,0.0,50.0]   | <=50K|[205018.99929839539,6.227844686207229,-8.176186180265503]  |
|[40.0,121772.0,11.0,0.0,0.0,40.0]   | >50K |[121771.99934864056,3.6945287780540603,-4.918583567278704] |
|[34.0,245487.0,4.0,0.0,0.0,45.0]    | <=50K|[245486.99924622496,7.4601494174606815,-9.75000324288002]  |
|[25.0,176756.0,9.0,0.0,0.0,35.0]    | <=50K|[176755.9994399727,5.370793765347799,-7.029037217537133]   |
|[32.0,186824.0,9.0,0.0,0.0,40.0]    | <=50K|[186823.99934678187,5.675541056422981,-7.445605003141515]  |
|[38.0,28887.0,7.0,0.0,0.0,50.0]     | <=50K|[28886.99946951148,0.8668334219437271,-1.2969921640115318] |
|[43.0,292175.0,14.0,0.0,0.0,45.0]   | >50K |[292174.9990868344,8.87932321571431,-11.599483225618247]   |
+------------------------------------+------+-----------------------------------------------------------+
only showing top 20 rows>>> testdata.show(truncate=False) 
+------------------------------------+------+-----------------------------------------------------------+
|features                            |label |pcaFeatures                                                |
+------------------------------------+------+-----------------------------------------------------------+
|[25.0,226802.0,7.0,0.0,0.0,40.0]    | <=50K|[226801.99936708904,6.893313042325555,-8.993983821758796]  |
|[38.0,89814.0,9.0,0.0,0.0,50.0]     | <=50K|[89813.99938947687,2.7209873244764906,-3.6809508659704675] |
|[28.0,336951.0,12.0,0.0,0.0,40.0]   | >50K |[336950.99919122306,10.244920104026273,-13.310695651856003]|
|[44.0,160323.0,10.0,7688.0,0.0,40.0]| >50K |[160323.23272903427,-7683.121090489607,-19.729118648470976]|
|[18.0,103497.0,10.0,0.0,0.0,30.0]   | <=50K|[103496.99961293535,3.142862309150963,-4.141563083946321]  |
|[34.0,198693.0,6.0,0.0,0.0,30.0]    | <=50K|[198692.9993369046,6.03791177465338,-7.894879761309586]    |
|[29.0,227026.0,9.0,0.0,0.0,40.0]    | <=50K|[227025.99932507655,6.899470708670979,-9.011878890810314]  |
|[63.0,104626.0,15.0,3103.0,0.0,32.0]| >50K |[104626.09338764261,-3099.8250060692035,-9.648800672052692]|
|[24.0,369667.0,10.0,0.0,0.0,40.0]   | <=50K|[369666.99919110356,11.241251385609905,-14.581104454203475]|
|[55.0,104996.0,4.0,0.0,0.0,10.0]    | <=50K|[104995.9992947583,3.186050789405019,-4.236895975019816]   |
|[65.0,184454.0,9.0,6418.0,0.0,40.0] | >50K |[184454.1939240066,-6412.391589847388,-18.518448307264528] |
|[36.0,212465.0,13.0,0.0,0.0,40.0]   | <=50K|[212464.99927015396,6.455148844458399,-8.458640605561254]  |
|[26.0,82091.0,9.0,0.0,0.0,39.0]     | <=50K|[82090.999542367,2.489111409624171,-3.335593188553175]     |
|[58.0,299831.0,9.0,0.0,0.0,35.0]    | <=50K|[299830.9989556855,9.111696151562521,-11.909141441347733]  |
|[48.0,279724.0,9.0,3103.0,0.0,48.0] | >50K |[279724.0932834471,-3094.495799296398,-16.491321474159864] |
|[43.0,346189.0,14.0,0.0,0.0,50.0]   | >50K |[346188.9990067698,10.522518314317386,-13.720686643182727] |
|[20.0,444554.0,10.0,0.0,0.0,25.0]   | <=50K|[444553.9991678726,13.52288689604709,-17.47586621453762]   |
|[43.0,128354.0,9.0,0.0,0.0,30.0]    | <=50K|[128353.99933456781,3.895809826834201,-5.163630508998832]  |
|[37.0,60548.0,9.0,0.0,0.0,20.0]     | <=50K|[60547.99950268136,1.834388499828796,-2.482228457083787]   |
|[40.0,85019.0,16.0,0.0,0.0,45.0]    | >50K |[85018.99937940767,2.5751267063691055,-3.4924978737087193] |
+------------------------------------+------+-----------------------------------------------------------+
only showing top 20 rows

3、训练分类模型并预测居民收入 

          在主成分分析的基础上,采用逻辑斯蒂回归,或者决策树模型预测居民收入是否超过50K;对Test数据集进行验证。

        训练逻辑斯蒂回归模型,并进行测试,得到预测准确率。

>>> labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(result)
labelIndexer: pyspark.ml.feature.StringIndexerModel = StringIndexer_49fd892bf407764dcffb >>> for label in labelIndexer.labels:print(label)<=50K>50K>>> featureIndexer = VectorIndexer(inputCol="pcaFeatures", outputCol="indexedFeatures").fit(result)
featureIndexer: pyspark.ml.feature.VectorIndexerModel = VectorIndexer_48bc920d8af88e337d21>>> print(featureIndexer.numFeatures)
3>>> labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",labels=labelIndexer.labels)
labelConverter: pyspark.ml.feature.IndexToString = IndexToString_40e99a67399e57d7950c >>> lr = LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100)
lr: pyspark.ml.classification.LogisticRegression = LogisticRegression_44efaefad414357b7c36>>> lrPipeline = Pipeline().setStages([labelIndexer, featureIndexer, lr, labelConverter])
lrPipeline: pyspark.ml.Pipeline = Pipeline_49a886038fe4366cb525 >>> lrPipelineModel = lrPipeline.fit(result)
lrPipelineModel: pyspark.ml.PipelineModel = PipelineModel_43eb8e7d01dae015460c >>> lrModel = lrPipelineModel.stages[2]
lrModel:pyspark.ml.classification.LogisticRegressionModel = LogisticRegression_44efaefad414357b7c36>>> print ("Coefficients: \n " + str(lrModel.coefficientMatrix)+"\nIntercept: "+str(lrModel.interceptVector)+ "\n numClasses: "+str(lrModel.numClasses)+"\n numFeatures: "+str(lrModel.numFeatures))
Coefficients: DenseMatrix([[-1.98285864e-07, -3.50909247e-04, -8.45150628e-04]])
Intercept: [-1.4525982557843347]numClasses: 2numFeatures: 3>>> lrPredictions = lrPipelineModel.transform(testdata)
lrPredictions: pyspark.sql.DataFrame = DataFrame[features: vector, label: string, pcaFeatures: vector, indexedLabel: double, indexedFeatures: vector, rawPrediction: vector, probability: vector, prediction: double, predictedLabel: string] >>> evaluator = MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
evaluator: pyspark.ml.evaluation.MulticlassClassificationEvaluator = MulticlassClassificationEvaluator_44fb8a00fb8868ae541f >>> lrAccuracy = evaluator.evaluate(lrPredictions)
lrAccuracy: Double = 0.7764235163053484>>> print("Test Error = %g " % (1.0 - lrAccuracy))
Test Error = 0.223576

4、超参数调优

        利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等。

>>> pca = PCA().setInputCol("features").setOutputCol("pcaFeatures")
pca: pyspark.ml.feature.PCA = PCA_465ea3aeee8f823b1cc2>>> labelIndexer = StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df)
labelIndexer: pyspark.ml.feature.StringIndexerModel = StringIndexer_4a4caa1f671823df2712 >>> featureIndexer = VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures")
featureIndexer: pyspark.ml.feature.VectorIndexer = VectorIndexer_4a87a808787866220518>>> labelConverter = IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
labelConverter: pyspark.ml.feature.IndexToString = IndexToString_444190300664cc71e5b5>>> lr = LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100)
lr: pyspark.ml.classification.LogisticRegression = LogisticRegression_4ff3b577b810fd21ab1b>>> lrPipeline = Pipeline().setStages([pca, labelIndexer, featureIndexer, lr, labelConverter])
lrPipeline: pyspark.ml.Pipeline = Pipeline_4165a34a906306ee044a>>> paramGrid = ParamGridBuilder().addGrid(pca.k, [1,2,3,4,5,6]).addGrid(lr.elasticNetParam, [0.2,0.8]).addGrid(lr.regParam, [0.01, 0.1, 0.5]).build()
paramGrid: Array[pyspark.ml.param.ParamMap] =
{Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.2, Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='regParam', doc='regularization parameter (>= 0).'): 0.01, Param(parent=u'PCA_465ea3aeee8f823b1cc2', name='k', doc='the number of principal components'): 1}
{Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.2, Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='regParam', doc='regularization parameter (>= 0).'): 0.01, Param(parent=u'PCA_465ea3aeee8f823b1cc2', name='k', doc='the number of principal components'): 2}
{Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.2, Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='regParam', doc='regularization parameter (>= 0).'): 0.01, Param(parent=u'PCA_465ea3ae……
>>> cv = CrossValidator().setEstimator(lrPipeline).setEvaluator(MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")).setEstimatorParamMaps(paramGrid).setNumFolds(3)
cv: pyspark.ml.tuning.CrossValidator = CrossValidator_4d4eaeb04035ccae91e2>>> cvModel = cv.fit(df)
cvModel: pyspark.ml.tuning.CrossValidatorModel = CrossValidatorModel_4601a7d61debbfd3544e>>> lrPredictions=cvModel.transform(test)
lrPredictions: pyspark.sql.DataFrame = [features: vector, label: string, pcaFeatures: vector, indexedLabel: double, indexedFeatures: vector, rawPrediction: vector, probability: vector, prediction: double, predictedLabel: string] >>> evaluator = MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
evaluator: pyspark.ml.evaluation.MulticlassClassificationEvaluator = MulticlassClassificationEvaluator_40bfa39a6a73931437c8>>> lrAccuracy = evaluator.evaluate(lrPredictions)
lrAccuracy: Double = 0.7833268290041506>>> print("准确率为"+str(lrAccuracy))
准确率为0.7833268290041506>>> bestModel= cvModel.bestModel
bestModel: pyspark.ml.PipelineModel = PipelineModel_47388ab70ca452562894>>> lrModel = bestModel.stages[3]
lrModel: pyspark.ml.classification.LogisticRegressionModel = LogisticRegression_46d894d2cea1ed552ec5>>> print ("Coefficients: \n " + str(lrModel.coefficientMatrix)+"\nIntercept: "+str(lrModel.interceptVector)+ "\n numClasses: "+str(lrModel.numClasses)+"\n numFeatures: "+str(lrModel.numFeatures))
Coefficients: DenseMatrix([[-1.50035172e-07, -1.68933655e-04, -8.83869475e-04,4.92262006e-02,  3.10992712e-02, -2.81742804e-01]])
Intercept: [-7.459195847829245]numClasses: 2numFeatures: 6>>> pcaModel = bestModel.stages[0]
pcaModel: pyspark.ml.feature.PCAModel = PCA_423c88604bc4e9c371f3>>> print("Primary Component: " + str(pcaModel.pc))
Primary Component: -9.905077142269292E-6   -1.435140700776355E-4   ... (6 total)
0.9999999987209459      3.0433787125958012E-5   ...
-1.0528384042028638E-6  -4.2722845240104086E-5  ...
3.036788110999389E-5    -0.9999984834627625     ...
-3.9138987702868906E-5  0.0017298954619051868   ...
-2.1955537150508903E-6  -1.3109584368381985E-4  ...

可以看出,PCA最优的维数是6。

四、结果分析与实验体会

        MLlib是Spark的机器学习(Machine Learning)库,旨在简化机器学习的工程实践工作 MLlib由一些通用的学习算法和工具组成,包括分类、回归、聚类、协同过滤、降维等,同时还包括底层的优化原语和高层的流水线(Pipeline)API。通过对 Spark 机器学习库 MLlib 的编程实验,我体会到了以下几个方面的丰富之处:

  1. 广泛的算法覆盖: MLlib 提供了各种机器学习算法的实现,包括线性回归、逻辑回归、决策树、随机森林、梯度提升树、支持向量机、朴素贝叶斯、聚类算法(如K-means和层次聚类)、推荐系统(如协同过滤和基于矩阵分解的方法)等。这使得我们可以选择最适合特定任务的算法进行建模和预测。

  2. 大规模数据处理: 基于 Spark 引擎,MLlib 可以处理大规模数据集,利用分布式计算能力进行高效的机器学习任务。分布式数据处理和计算可以加速训练过程,使其适用于处理海量数据的场景。

  3. DataFrame API: MLlib 使用 Spark 的 DataFrame API 进行数据处理和特征工程,这个 API 提供了丰富的函数和转换操作,使得数据清洗、特征提取和转换等流程更加简洁和可扩展。

  4. 模型持久化与加载: MLlib 支持将训练好的模型保存到磁盘,并且可以方便地加载模型进行预测和推理。这样,在实际应用中,可以将模型部署到生产环境中,进行实时的数据处理和预测。

  5. 参数调优工具: MLlib 提供了交叉验证和参数网格搜索等调参工具,帮助我们优化模型的超参数选择,提高模型的性能和泛化能力。

        通过深入学习和实践 MLlib,我们可以更好地理解和应用各种机器学习算法,掌握大规模数据处理和分布式计算的技巧,为解决实际问题提供强大的工具和框架。MLlib 的丰富性使得我们能够灵活选择和组合不同的算法和技术,以满足不同场景下的需求,并构建出高效、准确的机器学习模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256773.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Codeforces Round 925 (Div. 3)

Codeforces Round 925 (Div. 3) Codeforces Round 925 (Div. 3) A. Recovering a Small String 题意&#xff1a;给出一个整数n&#xff0c;为三个26个字母的位置序号的和&#xff0c;输出字典序最小的三个字符的字符串。 思路&#xff1a;直接倒推&#xff0c;顺一遍&…

H12-821_144

144.R1、R2、R3和R4运行OSPF&#xff0c;区域ID如图所示&#xff0c;则是____ABR。(请填写设备名称&#xff0c;例如R1) 答案&#xff1a;R2 注释&#xff1a; ABR需要满足两个条件&#xff1a;连接两个或者两个以上的区域&#xff0c;并且其中有一个区域是区域0。 ABR又有…

扩展速度提高了12倍!AWS Lambda 函数重大改进!

Marcia 是 Amazon Web Services 的首席开发倡导者&#xff0c;在软件行业构建和扩展应用程序方面拥有20年的工作经验。她热衷于设计能够充分利用云并拥抱DevOps文化的系统。最近她发表了一篇博文&#xff0c;带来了一个AWS Lambda重大改进&#xff1a;扩展速度提升了 12 倍&…

springboot182基于springboot的网上服装商城

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

vivado 使用块综合策略

使用块综合策略 概述 AMD Vivado™合成具有许多策略和全局设置&#xff0c;您可以使用这些策略和设置自定义设计的合成方式。此图显示了可用的预定义策略在“合成设置”和“表&#xff1a;Vivado预配置策略”中提供了一个并排的战略设置的比较。您可以使用RTL或中的属性或XDC…

2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 2023年是人工智能大语言模型大爆发的一年&#xff0c;一些概念和英文缩写也在这一年里集中出现&#xff0c;很容易混淆&#xff0c;甚至把人搞懵。 文章目录 前言01 《ChatGPT 驱动软件开…

C++完成使用map Update数据 二进制数据

1、在LXMysql.h和LXMysql.cpp分别定义和编写关于pin语句的代码 //获取更新数据的sql语句 where语句中用户要包含where 更新std::string GetUpdatesql(XDATA kv, std::string table, std::string where); std::string LXMysql::GetUpdatesql(XDATA kv, std::string table, std…

三分钟教你如何把不要钱的ChatGPT3.5用出花钱4.0的效果!

三分钟教你如何把不要钱的ChatGPT3.5用出花钱4.0的效果&#xff01; 关注微信公众号 DeepGo 计算机杂谈及深度学习记录&分享 上一期我们聊到 ChatGPT4.0确实在各方面都优于3.5 花了钱的就是不一样 但我们有没有办法去弥补这一差距呢&#xff1f; 今天我就来教你 转发…

mysql表设计

表设计流程&#xff1a; &#xff08;1&#xff09;分库&#xff1a;根据模块分 &#xff08;2&#xff09;分表&#xff1a;根据流程分表 &#xff08;3&#xff09;冗余字段和视图设计 21个表设计准则 &#xff08;1&#xff09;命名规范 account_no,account_number 表名用t…

OpenCV-38 图像金字塔

目录 一、图像金字塔 1. 高斯金字塔 2. 拉普拉斯金字塔 一、图像金字塔 图像金字塔是图像中多尺度表达的一种&#xff0c;最主要用于图像的分割&#xff0c;是一种以多分辨率来解释图像的有效但概念简单的结构。简单来说&#xff0c;图像金字塔是同一图像不同分辨率的子图…

【RabbitMQ(一)】:基本介绍 | 配置安装与快速入门

应该是新年前最后一篇博客了&#xff0c;明天浅浅休息一下&#xff0c;提前祝大家新年快乐捏&#xff01;&#x1f60a;&#x1f60a;&#x1f60a; 01. 基础理解 1.1 同步调用和异步调用 &#x1f449; 同步调用 的时候调用者会 阻塞 等待被调用函数或方法执行完成&#xff…

《Java 简易速速上手小册》第9章:Java 开发工具和框架 (2024 最新版)

文章目录 9.1 Maven 和 Gradle - 构建与依赖管理的神兵利器9.1.1 基础知识9.1.2 重点案例&#xff1a;使用 Maven 构建 Spring Boot 应用9.1.3 拓展案例 1&#xff1a;使用 Gradle 构建多模块项目9.1.4 拓展案例 2&#xff1a;利用 Gradle Wrapper 确保构建的一致性 9.2 Spring…

InstantBox:开箱即用的临时 Linux 环境

在云计算和虚拟化技术日益成熟的今天&#xff0c;我们有时需要一个快速、简单、临时的 Linux 环境来进行各种任务。这就是 InstantBox 的用武之地。 什么是 InstantBox&#xff1f; InstantBox 是一个开源项目&#xff0c;它可以快速启动临时的 Linux 系统&#xff0c;并提供…

Vue-自定义属性和插槽(五)

目录 自定义指令 基本语法 (全局&局部注册) 指令的值 练习&#xff1a;v-loading 指令封装 总结&#xff1a; 插槽&#xff08;slot&#xff09; 默认插槽 插槽 - 后备内容&#xff08;默认值&#xff09; 具名插槽 具名插槽基本语法: 具名插槽简化语法: 作…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之StepperItem组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之StepperItem组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、StepperItem组件 用作Stepper组件的页面子组件。 子组件 无。 接口 St…

浅谈进制的转换

本文创作灵感来自CSDN咸鱼WCY 的 咸鱼小白学嵌入式之C语言&#xff08;2.进制&#xff09; 博主更完就没更了&#xff0c;决定书接上回&#xff08;喜 进制是个啥 要理解进制&#xff0c;首先哈&#xff0c;咱得知道不同进制的含义 说到底&#xff0c;各个进制其实有点像在…

双活工作关于nacos注册中心的数据迁移

最近在做一个双活的项目&#xff0c;在纠结一个注册中心是在双活机房都准备一个&#xff0c;那主机房的数据如果传过去呢&#xff0c;查了一些资料&#xff0c;最终在官网查到了一个NacosSync 的组件&#xff0c;主要用来做数据传输的&#xff0c;并且支持在线替换注册中心的&a…

java SSM新闻管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM新闻管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S…

springsecurity6使用

spring security 中的类 &#xff1a; AuthenticationManager : 实现类&#xff1a;ProviderManager 管理很多的 provider &#xff0c;&#xff0c;&#xff0c; 经常使用的&#xff0c;DaoAuthenticationProvider , 这个要设置一个 UserDetailService , 查找数据库&#xff…

生存类游戏《幻兽帕鲁》从部署服务器到开始体验全过程

SteamDB数据显示&#xff0c;《幻兽帕鲁》上线24小时内&#xff0c;在线人数峰值便突破200万&#xff0c;跻身Steam历史排行榜第二位。随着热度进一步发酵&#xff0c;《幻兽帕鲁》官方发布推文称&#xff0c;游戏发售不到6天&#xff0c;销量已经突破了 800万份。欢迎大家在阿…