数据分析(一) 理解数据

1. 描述性统计(summary)

对于一个新数据集,首先通过观察来熟悉它,可以打印数据相关信息来大致观察数据的常规特点,比如数据规模(行数列数)、数据类型、类别数量(变量数目、取值范围)、缺失值、异常值等等。然后通过描述性统计来了解数据的统计特性、属性间关联关系、属性与标签的关联关系等。

数据集一般是按照行列组织的,每行代表一个实例,每列代表一个属性。

import pandas as pd

import sys

import numpy as np

import pylab

import matplotlib.pyplot as plt

data = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)

# summary

nrow, ncol = data.shape

print(f"行数:{nrow}, 列数:{ncol}")

summary = data.describe()

print(summary)

# 箱线图

data_array = data.iloc[:, :3].values

pylab.boxplot(data_array)

plt.xlabel("Attribute Index")

plt.ylabel(("Quartile Ranges"))

pylab.show()

# 标准化后的箱线图

dataNormalized = data.iloc[:, :3]

for i in range(2):

    mean = summary.iloc[1, i]

    sd = summary.iloc[2, i]

    dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sd

    array3 = dataNormalized.values

pylab.boxplot(array3)

plt.xlabel("Attribute Index")

plt.ylabel(("Quartile Ranges - Normalized "))

pylab.show()

colArray = np.array(list(data.iloc[:, 0]))

colMean = np.mean(colArray)

colsd = np.std(colArray)

sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +

                 "Standard Deviation = " + '\t ' + str(colsd) + "\n")

# calculate quantile boundaries(四分位数边界)

ntiles = 4

percentBdry = []

for i in range(ntiles + 1):

    percentBdry.append(np.percentile(colArray, i * (100) / ntiles))

sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")

print(percentBdry)

sys.stdout.write(" \n")

# run again with 10 equal intervals(十分位数边界)

ntiles = 10

percentBdry = []

for i in range(ntiles + 1):

    percentBdry.append(np.percentile(colArray, i * (100) / ntiles))

sys.stdout.write("Boundaries for 10 Equal Percentiles \n")

print(percentBdry)

sys.stdout.write(" \n")

# The last column contains categorical variables(标签变量)

colData = list(data.iloc[:, 1])

unique = set(colData)

sys.stdout.write("Unique Label Values \n")

print(unique)

# count up the number of elements having each value

catDict = dict(zip(list(unique), range(len(unique))))

catCount = [0] * 2

for elt in colData:

    catCount[catDict[elt]] += 1

sys.stdout.write("\nCounts for Each Value of Categorical Label \n")

print(list(unique))

print(catCount)

图中显示了一个小长方形,有一个红线穿过它。红线代表此列数据的中位数(第 50 百分位数),长方形的顶和底分别表示第 25 百分位数和第 75 百分位数(或者第一四分位数、第三四分位数)。在盒子的上方和下方有小的水平线,叫作盒须(whisker)。它们分别据盒子的上边和下边是四分位间距的 1.4 倍,四分位间距就是第 75 百分位数和第 25 百分位数之间的距离,也就是从盒子的顶边到盒子底边的距离。也就是说盒子上面的盒须到盒子顶边的距离是盒子高度的 1.4 倍。这个盒须的 1.4 倍距离是可以调整的(详见箱线图的相关文档)。在有些情况下,盒须要比 1.4 倍距离近,这说明数据的值并没有扩散到原定计算出来的盒须的位置。在这种情况下,盒须被放在最极端的点上。在另外一些情况下,数据扩散到远远超出计算出的盒须的位置(1.4 倍盒子高度的距离),这些点被认为是异常点。

2. 二阶统计信息(distribute,corr)

# 分位数图

import scipy.stats as stats

import pylab

stats.probplot(colArray, dist="norm", plot=pylab)

pylab.show()

如果此数据服从高斯分布,则画出来的点应该是接近一条直线。

# 属性间关系散点图

import matplotlib.pyplot as plt

data_row1 = data.iloc[0, :3]

data_row2 = data.iloc[1, :3]

plt.scatter(data_row1, data_row2)

plt.xlabel("1st Attribute")

plt.ylabel(("2nd Attribute"))

plt.show()

# 属性和标签相关性散点图

from random import uniform

target = []

for i in range(len(colData)):

    if colData[i] == 'R':  # R用1代表, M用0代表

        target.append(1)

    else:

        target.append(0)

plt.scatter(data_row1, target)

plt.xlabel("Attribute Value")

plt.ylabel("Target Value")

plt.show()

target = []

for i in range(len(colData)):

    if colData[i] == 'R':  # R用1代表, M用0代表

        target.append(1+uniform(-0.1, 0.1))

    else:

        target.append(0+uniform(-0.1, 0.1))

plt.scatter(data_row1, target, alpha=0.5, s=120)  # 透明度50%

plt.xlabel("Attribute Value")

plt.ylabel("Target Value")

plt.show()

第二个图绘制时取 alpha=0.5,这样这些点就是半透明的。那么在散点图中若多个点落在一个位置就会形成一个更黑的区域。

# 关系矩阵及其热图

corMat = pd.DataFrame(data.corr())

plt.pcolor(corMat)

plt.show()

属性之间如果完全相关(相关系数 =1)意味着数据可能有错误,如同样的数据录入两次。多个属性间的相关性很高(相关系数 >0.7),即多重共线性(multicollinearity),往往会导致预测结果不稳定。属性与标签的相关性则不同,如果属性和标签相关,则通常意味着两者之间具有可预测的关系

# 平行坐标图

minRings = summary.iloc[3, 2]  # summary第3行为min

maxRings = summary.iloc[7, 2]  # summary第7行为max

for i in range(nrow):

    # plot rows of data as if they were series data

    dataRow = data.iloc[i, :3]

    labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)

    dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)

plt.xlabel("Attribute Index")

plt.ylabel(("Attribute Values"))

plt.show()

# 对数变换后平行坐标图

meanRings = summary.iloc[1, 2]

sdRings = summary.iloc[2, 2]

for i in range(nrow):

    dataRow = data.iloc[i, :3]

    normTarget = (data.iloc[i, 2] - meanRings) / sdRings

    labelColor = 1.0 / (1.0 + np.exp(-normTarget))

    dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)

plt.xlabel("Attribute Index")

plt.ylabel(("Attribute Values"))

plt.show()

在属性值相近的地方,折线的颜色也比较接近,则会集中在一起。这些相关性都暗示可以构建相当准确的预测模型。相反,有些微弱的蓝色折线与深橘色的区域混合在一起,说明有些实例可能很难正确预测。

转换后可以更充分地利用颜色标尺中的各种颜色。注意到针对某些个属性,有些深蓝的线(对应年龄大的品种)混入了浅蓝线的区域,甚至是黄色、亮红的区域。这意味着,当该属性值较大时,仅仅这些属性不足以准确地预测出鲍鱼的年龄。好在其他属性可以很好地把深蓝线区分出来。这些观察都有助于分析预测错误的原因。

3. 完整代码(code)

import pandas as pd
import sys
import numpy as np
import pylab
import matplotlib.pyplot as pltdata = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)nrow, ncol = data.shape
print(f"行数:{nrow}, 列数:{ncol}")
summary = data.describe()
print(summary)data_array = data.iloc[:, :3].values
pylab.boxplot(data_array)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges"))
pylab.show()dataNormalized = data.iloc[:, :3]
for i in range(2):mean = summary.iloc[1, i]sd = summary.iloc[2, i]dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sdarray3 = dataNormalized.values
pylab.boxplot(array3)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges - Normalized "))
pylab.show()colArray = np.array(list(data.iloc[:, 0]))
colMean = np.mean(colArray)
colsd = np.std(colArray)
sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +"Standard Deviation = " + '\t ' + str(colsd) + "\n")# calculate quantile boundaries(四分位数边界)
ntiles = 4
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# run again with 10 equal intervals(十分位数边界)
ntiles = 10
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))
sys.stdout.write("Boundaries for 10 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# The last column contains categorical variables(标签变量)
colData = list(data.iloc[:, 3])
unique = set(colData)
sys.stdout.write("Unique Label Values \n")
print(unique)# count up the number of elements having each value
catDict = dict(zip(list(unique), range(len(unique))))
catCount = [0] * 2
for elt in colData:catCount[catDict[elt]] += 1
sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
print(list(unique))
print(catCount)# 分位数图
import scipy.stats as statsstats.probplot(colArray, dist="norm", plot=pylab)
pylab.show()# 属性间关系散点图
data_row1 = data.iloc[:, 0]
data_row2 = data.iloc[:, 1]
plt.scatter(data_row1, data_row2)
plt.xlabel("1st Attribute")
plt.ylabel(("2nd Attribute"))
plt.show()# 属性和标签相关性散点图
from random import uniformtarget = []
for i in range(len(colData)):if colData[i] == 'R':  # R用1代表, M用0代表target.append(1)else:target.append(0)
plt.scatter(data_row1, target)
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()target = []
for i in range(len(colData)):if colData[i] == 'R':  # R用1代表, M用0代表target.append(1 + uniform(-0.1, 0.1))else:target.append(0 + uniform(-0.1, 0.1))
plt.scatter(data_row1, target, alpha=0.5, s=120)  # 透明度50%
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()# 关系矩阵及其热图
corMat = pd.DataFrame(data.corr())
plt.pcolor(corMat)
plt.show()# 平行坐标图
minRings = summary.iloc[3, 2]  # summary第3行为min
maxRings = summary.iloc[7, 2]  # summary第7行为max
for i in range(nrow):# plot rows of data as if they were series datadataRow = data.iloc[i, :3]labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()meanRings = summary.iloc[1, 2]
sdRings = summary.iloc[2, 2]
for i in range(nrow):dataRow = data.iloc[i, :3]normTarget = (data.iloc[i, 2] - meanRings) / sdRingslabelColor = 1.0 / (1.0 + np.exp(-normTarget))dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259312.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

剪辑视频衔接怎么操作 剪辑视频衔接过渡自然方法 剪辑视频教程新手入门 抖音剪辑短视频 会声会影视频制作教程

视频剪辑在现代社交媒体和数字媒体时代中变得越来越重要。它广泛应用于各种领域,包括电影制作、广告宣传、教育培训、社交媒体内容创作等。 一、剪辑视频衔接怎么操作 会声会影是一款功能强大、易于使用的视频编辑软件。接下来我们拿会声会影为例讲解剪辑视频如何…

这样讲话,可以减少95%的沟通问题

上一篇文章中,我们分享了沟通 3S 原则的第一点:简洁。 但是,仅仅有简洁,是不够的。简洁并不是我们沟通的目的,而只是方式。 沟通的目的是什么呢?是将信息高效地传达给对方,并在这过程中&#xf…

HCIA-HarmonyOS设备开发认证V2.0-轻量系统内核内存管理-静态内存

目录 一、内存管理二、静态内存2.1、静态内存运行机制2.2、静态内存开发流程2.3、静态内存接口2.4、实例2.5、代码分析(待续...)坚持就有收货 一、内存管理 内存管理模块管理系统的内存资源,它是操作系统的核心模块之一,主要包括…

【Web】NSSCTF Round#18 Basic个人wp(部分)

目录 ①门酱想玩什么呢? ②Becomeroot ①门酱想玩什么呢? 先试一下随便给个链接 不能访问远程链接,结合评论区功能,不难联想到xss,只要给个评论区链接让门酱访问就可 我们研究下评论区 从评论区知道,要…

jsp计算机线上教学系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 计算机线上教学系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5…

计算机网络——11EMail

EMail 电子邮件(EMail) 3个主要组成部分 用户代理邮件服务器简单邮件传输协议:SMTP 用户代理 又名“邮件阅读器”撰写、编辑和阅读邮件输入和输出邮件保存在服务器上 邮件服务器 邮箱中管理和维护发送给用户的邮件输出报文队列保持待发…

ChatGPT重大升级:能自动记住用户的习惯和喜好,用户有权决定是否共享数据给OpenAI

OpenAI刚刚宣布了ChatGPT的一项激动人心的更新! OpenAI在ChatGPT中新加了记忆功能和用户控制选项,这意味着GPT能够在与用户的互动中记住之前的对话内容,并利用这些信息在后续的交谈中提供更加相关和定制化的回答。 这一功能目前正处于测试阶…

设计模式复习

单例模式 确保一个类最多只有一个实例,并提供一个全局访问点。 (某个类的对象有且仅有一个,单例的对象充当的是全局变量的角色,为什么在C里面不直接使用全局变量,而是使用单例来代替全局变量,因为如果直接…

Linux+Win双系统远程重启到Win

背景 电脑安装了双系统(ubuntu 22.04 win11),默认进入ubuntu系统。给电脑设置了WoL(Wake-on-LAN),方便远程开机远程控制。 但是ubuntu的引导程序grub无法远程控制,远程开机会默认进入ubuntu。 虽然说可以进入ubuntu后…

【后端高频面试题--设计模式下篇】

🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 后端高频面试题--设计模式下篇 往期精彩内容设计模式总览模板方法模式怎么理解模板方法模式模板方…

基于SpringBoot+WebSocket+Spring Task的前后端分离外卖项目-订单管理(十七)

订单管理 1. Spring Task1.1 介绍1.2 cron表达式1.3 入门案例1.3.1 Spring Task使用步骤1.3.2 代码开发1.3.3 功能测试 2.订单状态定时处理2.1 需求分析2.2 代码开发2.3 功能测试 3. WebSocket3.1 介绍3.2 入门案例3.2.1 案例分析3.2.2 代码开发3.2.3 功能测试 4. 来单提醒4.1 …

掌上新闻随心播控,HarmonyOS SDK助力新浪新闻打造精致易用的资讯服务新体验

原生智能是HarmonyOS NEXT的核心亮点之一,依托HarmonyOS SDK丰富全面的开放能力,开发者只需通过几行代码,即可快速实现AI功能。新浪新闻作为鸿蒙原生应用开发的先行者之一,从有声资讯入手,将基于Speech Kit朗读控件上线…

【Redis】深入理解 Redis 常用数据类型源码及底层实现(4.详解Hash数据结构)

Hash数据结构 看过前面的介绍,大家应该知道 Redis 的 Hash 结构的底层实现在 6 和 7 是不同的,Redis 6 是 ziplist 和 hashtable,Redis 7 是 listpack 和 hashtable。 我们先使用config get hash*看下 Redis 6 和 Redis 7 的 Hash 结构配置情况(在Redis客户端的命令行界面…

gem5学习(23):经典缓存——Classic Caches

目录 一、Interconnects 1、Crossbars 二、Debugging 默认缓存是一个带有MSHR(未命中状态保持寄存器)和WB(写缓冲区)的非阻塞缓存,用于读取和写入未命中。缓存还可以启用预取(通常在最后一级缓存中&…

智慧公厕:让智慧城市的公共厕所焕发“智慧活力”

智慧城市的建设已经进入了一个新的阶段,不仅仅是智慧交通、智慧环保,如今甚至连公厕都开始迎来智慧化时代。智慧公厕作为智慧城市的神经末梢,正在通过信息化、数字化和智慧化的方式,实现全方位的精细化管理。本文以智慧公厕源头专…

WebSocket 通信流程,注解和Spring实现WebSocket ,实战多人聊天室系统

一、前言 实现即时通信常见的有四种方式-分别是:轮询、长轮询(comet)、长连接(SSE)、WebSocket。 ①短轮询 很多网站为了实现推送技术,所用的技术都是轮询。轮询是在特定的的时间间隔(如每1秒),由客户端浏览器对服务…

Android 发布蒲公英平台自动更新

蒲公英官网:https://www.pgyer.com/ 首先弄明白蒲公英平台的SDK更新机制:蒲公英 - 文档中心 - SDK 自动更新机制 (pgyer.com) 下面直接开始代码操作 1.添加蒲公英maven库 maven { url "https://raw.githubusercontent.com/Pgyer/mvn_repo_pgyer…

【多线程】线程的概念与创建

多线程 1. 认识线程(Thread)线程是什么为啥要有线程进程和线程的区别Java 的线程 和 操作系统线程 的关系 2.第⼀个多线程程序3.创建线程⽅法1 继承 Thread 类⽅法2 实现 Runnable 接⼝方法3 匿名内部类创建 Thread ⼦类对象方法4 匿名内部类创建 Runnab…

【Vue前端】vue使用笔记0基础到高手第2篇:Vue知识点介绍(附代码,已分享)

本系列文章md笔记(已分享)主要讨论vue相关知识。Vue.js是前端三大新框架:Angular.js、React.js、Vue.js之一,Vue.js目前的使用和关注程度在三大框架中稍微胜出,并且它的热度还在递增。Vue.js是一个轻巧、高性能、可组件…

模型训练 —— AI算法初识

一、背景 AI算法中模型训练的主要目的是为了让机器学习算法从给定的标注数据中学习规律、特征和模式,并通过调整模型内部参数,使模型能够对未见过的数据进行准确预测或决策。具体来说: 1. **拟合数据**:模型通过训练来识别输入数…