基于YOLO11深度学习的遥感视角农田检测与分割系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】
67.【基于深度学习的农作物类别检测与识别系统】68.【基于深度学习的危险驾驶行为检测识别系统】
69.【基于深度学习的维修工具检测识别系统】70.【基于深度学习的维修工具检测识别系统】
71.【基于深度学习的建筑墙面损伤检测系统】72.【基于深度学习的煤矿传送带异物检测系统】
73.【基于深度学习的老鼠智能检测系统】74.【基于深度学习的水面垃圾智能检测识别系统】
75.【基于深度学习的遥感视角船只智能检测系统】76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】
79.【基于深度学习的果园苹果检测与计数系统】80.【基于深度学习的半导体芯片缺陷检测系统】
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统】82.【基于深度学习的运动鞋品牌检测与识别系统】
83.【基于深度学习的苹果叶片病害检测识别系统】84.【基于深度学习的医学X光骨折检测与语音提示系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

基本功能演示

基于YOLO11深度学习的遥感视角农田检测与分割系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

摘要:全球人口增长和城市化加速,使农业用地管理和保护至关重要。传统地面调查和低分辨率卫星图像分析在大规模监测中效率低、准确性有限。本文基于YOLO11深度学习框架,通过2880张遥感视角农田相关图片,训练了一个进行农田分割目标分割模型可以检测分割出农田的具体位置及大小。最终基于此模型开发了一款带UI界面的遥感视角农田检测与分割系统,可用于实时检测分割场景中的农田区域,并计算面积占比。该系统是基于pythonPyQT5开发的,支持图片、批量图片、视频以及摄像头进行目标检测分割,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 应用场景
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)检测结果保存
  • 二、目标分割模型的训练、评估与推理
    • 1.YOLO11简介
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 模型推理
  • 四、可视化系统制作
    • Pyqt5详细介绍
    • 系统制作
  • 【获取方式】

点击跳转至文末《完整相关文件及源码》获取


前言

随着全球人口的增长和城市化进程的加快,农业用地的有效管理和保护变得尤为重要。传统上,农田的监测主要依赖于地面调查或低分辨率卫星图像分析,这些方法在面对大规模区域时效率低下且准确性有限。基于YOLO深度学习框架开发的遥感视角农田检测与分割系统,能够实时自动分割高分辨率遥感影像中的农田区域,并精确计算其面积占比。该系统的应用不仅提高了农田监测的效率和准确性,还为土地利用规划、农业生产管理以及环境保护提供了科学依据,对于保障粮食安全和促进可持续发展具有重要意义。

应用场景

农业资源管理:帮助政府部门和农业企业准确掌握农田分布及其变化趋势,优化资源配置,制定合理的种植计划。
土地使用规划:支持城乡规划部门进行土地使用评估,确保农业用地不被非法占用,维护土地利用的合理布局。
灾害影响评估:在自然灾害(如洪水、干旱)发生后,快速评估受影响农田的范围和程度,指导灾后恢复工作。
精准农业:结合其他传感器数据,如土壤湿度、作物生长状况等,为农民提供精细化管理建议,提高农作物产量和质量。
环境监测:长期监测农田面积的变化情况,评估生态环境的影响,特别是针对森林砍伐、湿地破坏等问题,采取相应措施加以保护。

博主通过搜集遥感视角农田的相关图片,根据最前沿的YOLO11目标分割技术,基于python与Pyqt5开发了一款界面简洁的遥感视角农田检测与分割系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行遥感视角农田检测与分割,并计算每块分割区域面积占比
2. 支持图片、图片批量、视频及摄像头进行检测分割;
3. 可显示总分割面积占比以及单个目标的分割面积占比
4. 界面可实时显示目标位置分割结果分割面积占比置信度用时等信息;
5. 结果保存:支持图片视频摄像头分割结果保存

界面参数设置说明

在这里插入图片描述

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

在这里插入图片描述
3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容
显示Mask或者显示原始分割图片选项的功能效果如下:
显示Mask选项效果:
在这里插入图片描述

显示原始分割图片效果:
在这里插入图片描述

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。
4.点击表格中的指定行,界面会显示该行表格所写的信息内容。
注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:
在这里插入图片描述

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频
2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。

视频检测保存结果如下:
在这里插入图片描述

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头
2.点击保存按钮,可以进行摄像头实时图像的检测结果保存

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:
在这里插入图片描述
图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。

在这里插入图片描述

二、目标分割模型的训练、评估与推理

1.YOLO11简介

YOLO11源码地址:https://github.com/ultralytics/ultralytics

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
在这里插入图片描述

YOLO11创新点如下:

YOLO 11主要改进包括:
增强的特征提取:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。

YOLO11不同模型尺寸信息:

YOLO11 提供5种不同的型号规模模型,以满足不同的应用需求:

Modelsize (pixels)mAPval 50-95Speed CPU ONNX (ms)Speed T4 TensorRT10 (ms)params (M)FLOPs (B)
YOLO11n64039.556.1 ± 0.81.5 ± 0.02.66.5
YOLO11s64047.090.0 ± 1.22.5 ± 0.09.421.5
YOLO11m64051.5183.2 ± 2.04.7 ± 0.120.168.0
YOLO11l64053.4238.6 ± 1.46.2 ± 0.125.386.9
YOLO11x64054.7462.8 ± 6.711.3 ± 0.256.9194.9

2. 数据集准备与训练

通过网络上搜集关于遥感视角农田相关图片,并使用Labelme标注工具对每张图片中的分割结果及类别进行标注。一共包含2880张图片,其中训练集包含2304张图片验证集包含288张图片测试集包含288张图片。部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集的各类别具体分布如下所示:
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集、验证集放入Data目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\3.SegmentProgram\RemoteFarmlandSeg_v11\datasets\Data/train/images
val: D:\2MyCVProgram\3.SegmentProgram\RemoteFarmlandSeg_v11\datasets\Data/valid/images
test: D:\2MyCVProgram\3.SegmentProgram\RemoteFarmlandSeg_v11\datasets\Data/test/imagesnc: 1
names: ['farms']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')if __name__ == '__main__':# 训练模型配置文件路径yolo_yaml_path = 'ultralytics/cfg/models/11/yolo11-seg.yaml'# 数据集配置文件路径data_yaml_path = 'datasets/Data/data.yaml'# 官方预训练模型路径pre_model_path = "yolo11n-seg.pt"# 加载预训练模型model = YOLO(yolo_yaml_path).load(pre_model_path)# 模型训练model.train(data=data_yaml_path, epochs=150, batch=4)

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)、动态特征损失(dfl_loss)以及分割损失(seg_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLO11训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
分割损失(seg_loss):预测的分割结果与标定分割之前的误差,越小分割的越准确;
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP。

定位结果的PR曲线如下:
在这里插入图片描述

分割结果的PR曲线如下:
在这里插入图片描述

从上面图片曲线结果可以看到:定位的平均精度为0.915,分割的平均精度为0.913,结果还是非常不错的。

4. 模型推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/3c5850f9-image_1037_jpg.rf.bb143d78ac126f5e3bf367e6bb10028b.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='segment')
# model = YOLO(path, task='segment',conf=0.5)# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("Res", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

更多分割结果展示如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、可视化系统制作

基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】

Pyqt5详细介绍

关于Pyqt5的详细介绍可以参考之前的博客文章:《Python中的Pyqt5详细介绍:基本机构、部件、布局管理、信号与槽、跨平台》,地址:

https://a-xu-ai.blog.csdn.net/article/details/143273797

系统制作

博主基于Pyqt5框架开发了此款遥感视角农田检测与分割系统即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
在这里插入图片描述

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注末尾名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括环境配置文档说明、python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/26105.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis7——进阶篇(一)

前言:此篇文章系本人学习过程中记录下来的笔记,里面难免会有不少欠缺的地方,诚心期待大家多多给予指教。 基础篇: Redis(一)Redis(二)Redis(三)Redis&#x…

ST-LINK端口连接失败,启动GDB server失败的问题处理方法,有效

目录 1. 问题描述2. 解决办法2.1 后台关闭2.2 后台关闭无法找到ST进程或者关闭后未解决 1. 问题描述 报错: Failed to bind to port 61235, error code -1: No error Failure starting SWV server on TCP port: 61235 Failed to bind to port 61234, error code -1…

Helix——Figure 02发布的通用人形机器人控制VLA:不用微调即可做多个任务的快与慢双系统,让两个机器人协作干活(含清华HiRT详解)

前言 过去一周,我花了很大的心思、力气,把deepseek的GRPO、MLA算法的代码解析通透,比如GRPO与PPO的详细对比,再比如MLA中,图片 公式 代码的一一对应,详见此专栏《火爆全球的DeepSeek系列模型》 2.20日晚&…

性能测试测试策略制定|知名软件测评机构经验分享

随着互联网产品的普及,产品面对的用户量级也越来越大,能抗住指数级增长的瞬间访问量以及交易量是保障购物体验是否顺畅的至关重要的一环,而我们的性能测试恰恰也是为此而存在的。 性能测试是什么呢?性能测试要怎么测呢&#xff1f…

BigDecimal 为什么可以不丢失精度?

本文已收录至Java面试网站:https://topjavaer.cn 大家好,今天咱们来聊聊 Java 中的 BigDecimal。在金融领域,数据的精确性相当重要,一个小数点的误差可能就意味着几百万甚至几千万的损失。而 BigDecimal 就是专门用来解决这种高精…

杰发科技AC7801——滴答定时器获取时间戳

1. 滴答定时器 杰发科技7801内部有一个滴答定时器,该定时器是M0核自带的,因此可以直接用该定时器来获取时间戳。 同样,7803也可以使用该方式获取时间戳。 2. 滴答定时器原理 SysTick是一个24位的递减计数器,它从预设的重装载值…

Cursor+pycharm接入Codeuim(免费版),Tab自动补全功能平替

如题,笔者在Cursor中使用pycharm写python程序,试用期到了Tab自动补全功能就不能用了,安装Codeuim插件可以代替这个功能。步骤如下: 1. 在应用商店中搜索扩展Codeuim,下载安装 2. 安装完成后左下角会弹出提示框&#x…

第十四届蓝桥杯大赛软件赛国赛C/C++大学C组

A 【跑步计划——日期问题】-CSDN博客 B 【残缺的数字】-CSDN博客 C 题目 代码 #include <bits/stdc.h> using namespace std;void change(int &x) {int sum 0, t x;while(t){sum t % 10;t / 10;}x - sum; } int main() {int n;cin >> n;int ans 0;…

lua基础语法学习

lua基础语法学习 文章目录 lua基础语法学习1. 基础2. 输入输出3. 分支结构与循环结构4. 函数5. 元表与元方法6. 面向对象 1. 基础 注释 --单行注释--[[ 多行注释 --]]标识符 标识符以一个字母 A 到 Z 或 a 到 z 或下划线 _ 开头后加上 0 个或多个字母&#xff0c;下划线&…

Android APK组成编译打包流程详解

Android APK&#xff08;Android Package&#xff09;是 Android 应用的安装包文件&#xff0c;其组成和打包流程涉及多个步骤和文件结构。以下是详细的说明&#xff1a; 一、APK 的组成 APK 是一个 ZIP 格式的压缩包&#xff0c;包含应用运行所需的所有文件。解压后主要包含以…

【MySQL篇】数据库基础

目录 1&#xff0c;什么是数据库&#xff1f; 2&#xff0c;主流数据库 3&#xff0c;MySQL介绍 1&#xff0c;MySQL架构 2&#xff0c;SQL分类 3&#xff0c;MySQL存储引擎 1&#xff0c;什么是数据库&#xff1f; 数据库&#xff08;Database&#xff0c;简称DB&#xf…

卷积神经网络(cnn,类似lenet-1,八)

我们第一层用卷积核&#xff0c;前面已经成功&#xff0c;现在我们用两层卷积核&#xff1a; 结构如下&#xff0c;是不是很想lenet-1&#xff0c;其实我们24年就实现了sigmoid版本的&#xff1a; cnn突破九&#xff08;我们的五层卷积核bpnet网络就是lenet-1&#xff09;-CS…

uniapp中使用leaferui使用Canvas绘制复杂异形表格的实现方法

需求&#xff1a; 如下图&#xff0c;要实现左图的样式&#xff0c;先实现框架&#xff0c;文字到时候 往里填就行了&#xff0c;原来的解决方案是想用css,html来实现&#xff0c;发现实现起来蛮麻烦的。我也没找到合适的实现方法&#xff0c;最后换使用canvas来实现&#xff…

Spring Cloud — 消息驱动 Stream

Spring Cloud Stream 是让微服务更容易在应用中实现消息的发布和订阅处理的框架。Stream 支持与多种消息中间件整合&#xff0c;如Kafka、RibbitMQ等。 本文使用的是Kafka消息中间件&#xff0c;依赖文件为&#xff1a; <dependency><groupId>org.springframewor…

网络安全应急响应中主机历史命令被删除 网络安全事件应急响应

17.1 网络安全应急响应概述 “居安思危&#xff0c;思则有备&#xff0c;有备无患。”网络安全应急响应是针对潜在发生的网络安全事件而采取的网络安全措施。本节主要阐述网络安全响应的概念、网络安全应急响应的发展、网络安全应急响应的相关要求。 17.1.1 网络安全应急响应概…

QT——c++界面编程库

非界面编程 QT编译的时候&#xff0c;依赖于 .pro 配置文件&#xff1a; SOURCES: 所有需要参与编译的 .cpp 源文件 HEADERS:所有需要参与编译的.h 头文件 QT&#xff1a;所有需要参与编译的 QT函数库 .pro文件一旦修改&#xff0c;注意需要键盘按 ctrls 才能加载最新的配置文…

Typora的Github主题美化

[!note] Typora的Github主题进行一些自己喜欢的修改&#xff0c;主要包括&#xff1a;字体、代码块、表格样式 美化前&#xff1a; 美化后&#xff1a; 一、字体更换 之前便看上了「中文网字计划」的「朱雀仿宋」字体&#xff0c;于是一直想更换字体&#xff0c;奈何自己拖延症…

达梦数据库系列之安装及Mysql数据迁移

达梦数据库系列之安装及Mysql数据迁移 1. 达梦数据库1.1 简介1.2 Docker安装达梦1.2.1 默认密码查询1.2.2 docker启动指定密码 1.3 达梦数据库连接工具1.3.1 快捷键 2 Mysql数据库迁移至达梦2.1 使用SQLark进行数据迁移 1. 达梦数据库 1.1 简介 DM8是达梦公司在总结DM系列产品…

使用 Kubeflow 和 Ray 构建机器学习平台

使用 Kubeflow 和 Ray 构建一个稳健的 ML 平台。我们将深入讨论 Kubeflow 和 Ray 的独特功能,以及它们如何互补,共同创建一个强大的 ML 生态系统 集中化 ML 平台的需求 随着企业在 ML 旅程中的成熟,初始 ML 项目的临时性质逐渐让位于对更结构化和可扩展方法的需求。集中化…

【MySQL】数据库-图书管理系统(CC++实现)

一.预期功能 该图书管理系统设计提供基本的设计模版&#xff0c;涉及数据库的增删查改等操作&#xff0c;包含登录功能&#xff0c;图书管理功能&#xff0c;图书借阅功能&#xff0c;用户管理功能等基础功能&#xff0c;详细功能查看以下菜单表&#xff0c;共包含三个菜单&am…