多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型

多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型

目录

    • 多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型(完整源码和数据)
2.运行环境Matlab2023及以上,excel数据集,多列输入,单列输出,方便替换数据,考虑历史特征的影响;
3.多指标评价,评价指标包括:R2、MAE、MAPE、MSE等,代码质量极高。
冠豪猪算法CPO优化的BiTCN-BiGRU模型。通过优化学习率,BiGRU的神经元个数,滤波器个数,正则化参数四个参数提高其预测精度,减少人工调参。

CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型是一个结合了多种神经网络模型和优化算法的时间序列预测模型。让我逐步解释这个模型的不同组成部分:

CPO:CPO是一种优化算法,用于优化神经网络的参数。它可以通过调整网络参数来提高模型的性能。

BiTCN(Bidirectional Temporal Convolutional Network):BiTCN是一个双向的时间卷积神经网络模型。时间卷积神经网络可以有效地捕捉时间序列数据中的时序模式和趋势。双向表示模型可以同时考虑过去和未来的信息,进一步提高了预测性能。

BiGRU(Bidirectional Gated Recurrent Unit):BiGRU是一个双向门控循环单元模型。门控循环单元是一种循环神经网络模型,能够处理序列数据中的长期依赖关系。双向模型可以同时利用过去和未来的信息,提高预测准确性。

冠豪猪优化:冠豪猪优化是一种特定的优化算法,可能是作者自己定义的一种方法。它可能与传统的优化算法有所不同,但具体的细节需要参考原始论文或文献。

综合来看,CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型是一个综合了时间卷积神经网络、双向门控循环单元和特定优化算法的模型,用于处理多变量时间序列数据并进行预测。

程序设计

  • 完整程序和数据获取方式资源处私信回复Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型
clc;clear;close all;format compact
tic
clc
clear alloptions = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 70, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...                     % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 60, ...                    % 训练850次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', 0.01, ...                     % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/262573.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue监听器(上)之组合式watch

1. 定义监听器 //要监视的属性被改变时触发 watch(要监视的属性, (更改后的心值, 更改前的旧值) > {具体操作}, );//监视对象为getter的时候 //表达式内任意响应式属性被改变时触发 watch(() > return表达式, (表达式的新值, 表达式的旧值) > {具体操作} );//数组中任…

贪心/树形dp

思路: 因为如果红色节点的子树中如果有红色节点的话,那么该子树对其不会造成影响,不用考虑,因此我们在考虑每个红色节点时,不考虑其红色子树。那么如图,对每个红色节点答案有贡献的就是其所有非红色子节点…

Linux——简单的Shell程序

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、Shell程序思路二、Shell代码展示 一、Shell程序思路 用下图的时间轴来表示事件的发生次序…

activeMq将mqtt发布订阅转成消息队列

1、activemq.xml置文件新增如下内容 2、mqttx测试发送: 主题(配置的模糊匹配,为了并发):VirtualTopic/device/sendData/12312 3、mqtt接收的结果 4、程序处理 package comimport cn.hutool.core.date.DateUtil; imp…

(九)springmvc+mybatis+dubbo+zookeeper分布式架构 整合 - maven构建ant-framework核心代码Base封装

今天重点讲解的是ant-framework核心代码Base封装过程。 因为涉及到springmvc、mybatis的集成,为了使项目编码更简洁易用,这边将基础的BASE进行封装,其中包括:BaseBean、BaseDao、BaseService、CRUD的基础封装、分页组件的封装、m…

Spring6学习技术|Junit

学习材料 尚硅谷Spring零基础入门到进阶,一套搞定spring6全套视频教程(源码级讲解) Junit 背景 背景就是每次Test都要重复创建容器,获取对象。就是ApplicationContext和getBean两个语句。通过Spring整合Junit,可以…

开源分子对接程序rDock的安装及使用流程

欢迎浏览我的CSND博客! Blockbuater_drug …点击进入 前言 本文介绍开源分子对接程序rDock在Linux Ubuntu 22.04系统上的conda安装、编译安装过程及程序使用流程。 一、rDock是什么? rDock来源 rDock是一个快速、多功能的开源对接程序,可用…

springmvc+mybatis+springboot航空飞机订票售票系统_f48cp

互联网发展的越来越快了,在当下社会节点,人们也开始越来越依赖互联网。通过互联网信息和数据,极大地满足用户要求[5]。飞机订票系统使用了B/S模式,并且不需要安装第三方插件,他们甚至能直接在电脑上随机随地实现飞机订…

【分享】关于MAX232一点心得

MAX232 DIP16封装现主要有这些型号:MAX232CPE、MAX232EPE。 下面对MAX232的型号标识进行解析: ①、MAX232后缀第一个字母,表示应用级别。带“C”:商业级;带“E”:工业级。 例:MAX232CPE&…

函数栈帧的创建及销毁(超详解)

目录 1.预备知识 1.1内存区的划分 1.2认识相关寄存器和汇编指令 1.2.1寄存器 1.2.2相关汇编指令 2.测试前 2.1测试代码及环境 2.2 main函数也是被其他函数调用的 3.函数栈帧的创建 4.进入函数内部 5.形参与实参 6.call/jump add函数 7.函数栈帧的销毁 7.1保存…

书生·浦语大模型实战营第二节课作业

使用 InternLM-Chat-7B 模型生成 300 字的小故事(基础作业1)。 熟悉 hugging face 下载功能,使用 huggingface_hub python 包,下载 InternLM-20B 的 config.json 文件到本地(基础作业2)。 下载过程 进阶…

linux下执行文件包含^M,将window文件格式内容转为linux格式

查看文件内容 cat -v jvm_options 报错信息 ./bin/install-plugin.sh: /bigdata/opt/s/seatunnelsgg/apache-seatunnel-2.3.4/mvnw: /bin/sh^M: bad interpreter: No such file or directory install connector : connector-selectdb-cloud安装工具 yum install -y dos2uni…

西门子S7-1500作为智能设备共享功能

本章节介绍了共享设备的功能,优势,使用要求,使用规则,如何将智能设备作为共享设备,实现一个智能设备同时与2个IO控制器进行通信的示例,以及常见问题。 一、共享设备功能概述 信号模块可以被不同的IO控制器…

「Kafka」监控、集成篇

Kafka-Eagle 监控 Kafka-Eagle 框架可以监控 Kafka 集群的整体运行情况,在生产环境中经常使用。 MySQL环境准备 Kafka-Eagle 的安装依赖于 MySQL,MySQL 主要用来存储可视化展示的数据。 安装步骤参考:P61 尚硅谷 kafka监控_MySQL环境准备 …

如何在同一个module里面集成多个数据库的多张表数据

确保本公司数据安全,通常对数据的管理采取很多措施进行隔离访问。 但是,Mendix应怎样访问散布于异地的多个数据库呢? 前几期我们介绍过出海跨境的大企业对于Mendix的技术、人才的诉求后,陆陆续续有其他客户希望更聚焦具体的实际场…

数据结构链表力扣例题AC(4)——代码以及思路记录

21. 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 AC struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2) {if(list1 NULL){return list2;}if(list2 NULL){return l…

alibabacloud学习笔记06(小滴课堂)

讲Sentinel流量控制详细操作 基于并发线程进行限流配置实操 在浏览器打开快速刷新会报错 基于并发线程进行限流配置实操 讲解 微服务高可用利器Sentinel熔断降级规则 讲解服务调用常见的熔断状态和恢复 讲解服务调用熔断例子 我们写一个带异常的接口:

正交匹配追踪(Orthogonal Matching Pursuit, OMP)的MATLAB实现

压缩感知(Compressed Sensing, CS)是一种利用稀疏信号的先验知识,用远少于奈奎斯特采样定理要求的样本数目恢复整个信号的技术。正交匹配追踪(Orthogonal Matching Pursuit, OMP)是一种常见的贪婪算法(Gree…

OCPP 1.6 接入实现文档

一、简介 OCPP(Open Charge Point Protocol)是一个开放的通信协议,用于充电站(Charge Point)与中央系统(Central System,如充电站管理系统或服务提供商平台)之间的通讯。本篇文档将…

谷歌搜索引擎关键词优化,竞价排名怎么做?大舍传媒

公司 大舍传媒成立于2005年,并从那时开始专注于谷歌搜索引擎优化(SEO)。如今,我们已经拥有了十八年的海外数字营销经验。我们为全球数千个国际知名品牌客户提供服务,是一家专注于技术的公司。 谷歌排名成果 在谷歌&…