改进Yolov5目标检测与单目测距 yolo速度测量-pyqt界面-yolo添加注意力机制

当设计一个结合了 YOLOv5 目标检测、单目测距与速度测量以及 PyQt 界面的毕业设计时,需要考虑以下几个方面的具体细节:

计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,私聊会回复!

  1. YOLOv5 目标检测:

    • 首先,选择合适的 YOLOv5 模型(如 YOLOv5s、YOLOv5m、YOLOv5l 或 YOLOv5x)以满足项目需求,权衡模型大小和性能之间的平衡。
    • 进行目标类别的标注和数据集的准备,确保训练数据的质量和多样性,以提高检测准确度。
    • 考虑实时性要求,优化模型推理速度,可以使用 ONNX 进行模型转换和加速,或者利用 TensorRT 进行模型部署和优化。
      在这里插入图片描述
  2. 单目测距与速度测量:

    • 实现单目测距功能时,可以利用物体在图像中的大小和相机内参进行距离估计,也可结合深度学习技术进行深度估计。
    • 速度测量可以通过目标在连续帧之间的位移来计算,也可以借助光流法等技术实现运动速度的测量。
    • 考虑误差分析和校正方法,确保测距和测速的准确性和稳定性,例如引入卡尔曼滤波器进行数据融合处理。
      在这里插入图片描述
  3. PyQt 界面设计:

    • 设计直观友好的用户界面,包括主界面、设置界面、结果展示界面等,使用户能够方便地进行操作和查看结果。
    • 添加交互功能,如实时显示检测结果、测距信息和速度信息,支持用户交互式操作,提升用户体验和系统的易用性。
    • 考虑美观性和响应速度,选择合适的布局、颜色和字体,优化界面加载速度,确保界面流畅和用户友好。
      在这里插入图片描述
      在 PyQt 中,可以利用 OpenCV 库来实现图片、视频和摄像头的输入,具体方法如下:
  4. 图片输入:

    • 加载图片文件:使用 OpenCV 的 imread 函数,将图片文件读入到内存中,返回一个 numpy 数组类型的图片对象。
      #qq-1309399183
      import cv2
      img = cv2.imread("image.jpg")
      
    • 在 PyQt 界面中显示图片:使用 PyQt 的 QLabel 组件,通过 setPixmap 方法将 OpenCV 读取的图片对象转换成 QPixmap 对象,并设置为标签的图像。
      from PyQt5.QtGui import QPixmap
      from PyQt5.QtWidgets import QLabel, QApplication
      import sysapp = QApplication(sys.argv)
      label = QLabel()
      pixmap = QPixmap.fromImage(img.data, img.shape[1], img.shape[0], QImage.Format_RGB888)
      label.setPixmap(pixmap)
      label.show()
      sys.exit(app.exec_())
      
  5. 视频输入:

    • 打开本地视频文件:使用 OpenCV 的 VideoCapture 函数,打开本地视频文件,创建一个视频捕捉对象。
      import cv2
      cap = cv2.VideoCapture("video.avi")
      
    • 打开网络视频流:同样使用 VideoCapture 函数,传入视频流的 URL 地址即可打开网络视频流。
      import cv2
      cap = cv2.VideoCapture("http://xxx.xxx.xxx.xxx:xxxx/xxx.m3u8")
      
    • 在 PyQt 界面中显示视频:使用 OpenCV 的 imshow 函数循环读取视频帧并在界面中展示,需要注意的是需要使用 PyQt 的方法将 OpenCV 的图像类型转换为 QImage 类型。
      from PyQt5.QtGui import QImage
      import syswhile True:ret, frame = cap.read()if not ret:breakimg = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_RGB888)label.setPixmap(QPixmap.fromImage(img))QApplication.processEvents()
      
  6. 摄像头输入:

    • 打开摄像头:同样使用 OpenCV 的 VideoCapture 函数,传入摄像头的索引号即可打开摄像头。
      import cv2
      cap = cv2.VideoCapture(0)
      
    • 在 PyQt 界面中显示摄像头视频:和视频输入类似,不同的是需要通过 QTimer 定时器来触发读取摄像头帧数并在界面中展示。
      from PyQt5.QtCore import QTimer
      import sysdef update():ret, frame = cap.read()if not ret:returnimg = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_RGB888)label.setPixmap(QPixmap.fromImage(img))timer = QTimer()
      timer.timeout.connect(update)
      timer.start(1000 // 30)
      app.exec_()
      
  7. YOLOv5 改进:

    • 可以尝试引入注意力机制、跨尺度特征融合等技术来改进 YOLOv5 的检测性能,提高小目标检测和边界框精度。
    • 结合数据增强、迁移学习等方法,优化模型的训练过程,提升模型的泛化能力和鲁棒性。
    • 进行模型压缩和加速,如剪枝、量化等技术,以降低模型计算复杂度和内存占用,提高推理速度和效率。
      在 YOLOv5 模型中添加 SE(Squeeze-and-Excitation)注意力机制可以提高模型的表示能力和泛化性能,具体实现步骤如下:
  8. SE 注意力模块:

    • 定义 Squeeze 操作:对输入张量进行全局平均池化操作,将特征映射压缩为一个通道。
      class Squeeze(nn.Module):def forward(self, x):return torch.squeeze(x.mean((2, 3)), dim=(-1, -2))
      
    • 定义 Excitation 操作:通过两个全连接层将 Squeeze 操作输出的通道数降低并再次扩展,作为权重系数与原始特征相乘,实现特征的加权和。
      class Excitation(nn.Module):def __init__(self, channels, reduction=16):super(Excitation, self).__init__()mid_channels = max(channels // reduction, 1)self.fc1 = nn.Linear(channels, mid_channels)self.fc2 = nn.Linear(mid_channels, channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)out = self.sigmoid(out)out = out.unsqueeze(-1).unsqueeze(-1)return x * out
      
    • 将 Squeeze 和 Excitation 操作组合在一起,形成 SE 注意力模块:
      class SE(nn.Module):def __init__(self, channels, reduction=16):super(SE, self).__init__()self.squeeze = Squeeze()self.excitation = Excitation(channels, reduction)def forward(self, x):out = self.squeeze(x)out = self.excitation(out)return out
      
  9. 基于 YOLOv5 的改进:

    • 在 YOLOv5 模型中,SE 注意力模块可以应用在每个卷积层的输出上,以对特征图进行加权处理。
      class Conv(nn.Module):def __init__(self, ch_in, ch_out, k=1, s=1, p=None, g=1, act=True, se=False):super(Conv, self).__init__()self.conv = nn.Conv2d(ch_in, ch_out, kernel_size=k, stride=s, padding=p, groups=g, bias=False)self.bn = nn.BatchNorm2d(ch_out)self.act = nn.SiLU() if act else nn.Identity()self.se = SE(ch_out) if se else nn.Identity()def forward(self, x):out = self.conv(x)out = self.bn(out)out = self.act(out)out = self.se(out)return out
      
    • 将 Conv 模块中的参数 se 设置为 True,即可对特定的卷积层添加 SE 注意力模块。

通过细致设计和实施上述方案,可以打造一款功能完善、性能优越的毕业设计项目,展现出对目标检测与测量技术的深度理解和创新应用,为未来相关领域的研究和发展提供有益的参考和启示。

最后,看下方推广,或主页左下角推广!计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,私聊会回复!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263470.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PostgreSQL 实体化视图的使用

上周的教程中,通过 DVD Rental Database 示例,让我们了解了在 PostgreSQL 中创建实体化视图的过程。正如我们所了解的,PostgreSQL 实体化视图提供了一种强大的机制,通过预计算和存储查询结果集为物理表来提高查询性能。接下来的内…

【爬虫逆向实战篇】定位加密参数、断点调试与JS代码分析

文章目录 1. 写在前面2. 确认加密参数3. 加密参数定位4. XHR断点调试 【作者主页】:吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】:对JS逆向…

实现外网手机或者电脑随时随地远程访问家里的电脑主机(linux为例)

文章目录 一、背景概要二、安装配置花生壳软件(linux版本)三、手机端(外网)验证连接四、安装ubuntu20server版系统遇到的问题记录 一、背景概要 由于经常在遇到某些问题的时候,针对某一个场景的理解,需要借助于自己的电脑去编译(aosp/linux/qemu)代码查…

Python中回调函数的理解与应用

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站零基础入门的AI学习网站~。 目录 前言 回调函数的概念 回调函数的基本用法 回调函数的实现方式 1 使用函数 2 使用类方法 3 使用类实…

1.QT简介(介绍、安装,项目创建等)

1. QT介绍 Qt(官方发音 [kju:t])是一个跨平台的C开发库,主要用来开发图形用户界面(Graphical User Interface,GUI)程序 Qt 是纯 C 开发的,正常情况下需要先学习C语言、然后在学习C然后才能使用…

LaWGPT—基于中文法律知识的大模型

文章目录 LaWGPT:基于中文法律知识的大语言模型数据构建模型及训练步骤两个阶段二次训练流程指令精调步骤计算资源 项目结构模型部署及推理 LawGPT_zh:中文法律大模型(獬豸)数据构建知识问答模型推理训练步骤 LaWGPT:基…

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 实现GoogleNet和ResNet

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 代码: Pytorch实现GoogleNet import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.fun…

matplotlib子图绘制

文章目录 子图组合网格布局GridSpec matplotlib教程: 初步 子图 从绘图流程出发,【plt】图像有三个层级,依次是窗口、坐标系以及图像。在一个坐标系中可以有多条曲线,即表示多个图像;相应地在一个窗口中,…

wcf 简单实践 数据绑定 数据更新ui

1.概要 2.代码 2.1 xaml <Window x:Class"WpfApp3.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expr…

一键生成PDF即刻呈现:轻松创建无忧体验

在信息爆炸的时代&#xff0c;我们每天都在与各种文件、资料打交道。无论是工作中的报告、合同&#xff0c;还是学习中的笔记、论文&#xff0c;如何高效、安全地管理这些珍贵的资料&#xff0c;成为了我们迫切的需求。幸运的是&#xff0c;随着科技的发展&#xff0c;我们不再…

java面向对象高级

一、静态 static读作静态&#xff0c;可以用来修饰成员变量&#xff0c;也能修饰成员方法。我们先来学习static修饰成员变量。 1.1 static修饰成员变量 Java中的成员变量按照有无static修饰分为两种&#xff1a;类变量、实例变量。它们的区别如下图所示&#xff1a; 由于静态…

目标跟踪之KCF详解

High-Speed Tracking with Kernelized Correlation Filters 使用内核化相关滤波器进行高速跟踪 大多数现代跟踪器的核心组件是判别分类器&#xff0c;其任务是区分目标和周围环境。为了应对自然图像变化&#xff0c;此分类器通常使用平移和缩放的样本补丁进行训练。此类样本集…

【AI链接】 大模型语言模型网站链接

目录 GPT类1. chatgpt2. GROP3. Google AI Studio4. Moonshot AI (国内) 解读论文类&#xff1a;1. txyz 编程辅助插件&#xff1a;1. Fitten Code GPT类 1. chatgpt https://chat.openai.com/ 2. GROP https://groq.com/ 3. Google AI Studio https://aistudio.google…

爬取m3u8视频

网址&#xff1a;https://www.bhlsm.com/cupfoxplay/609-3-1/ 相关代码&#xff1a; #采集网址&#xff1a;https://www.bhlsm.com/cupfoxplay/609-3-1/ #正常视频网站&#xff1a;完整视频内容 # pip install pycryptodomex #流媒体文件&#xff1a;M3U8&#xff08;把完整的…

在那静谧的冬天你飘落我荒凉心园

北风 - 刘蓝溪/梁弘志 --女--在那静谧的冬天你飘落我荒凉心园恰似北风一袭吹去秋意无限带来几片相思带来往日笑靥只见北风又起撒落枯叶片片--男--在那静谧的冬天你走进我冷漠心田恰似北风一袭吹去秋意无限北风婵媛白云白云本是轻烟只见北风又见带来白云片片--合--喔喔喔 海角…

中国象棋开源人工智能程序(带UI)搬运

我的老父亲一直想买一个人工智能象棋机器人陪他下棋&#xff0c;我就在Github上找了一个开源项目&#xff0c;带UI的中国象棋人工智能程序&#xff0c;其训练方法类似AlphaZero&#xff0c;因而叫Chinese Chess Zero (cczero)。虽然看起来很久没有维护了&#xff0c;但是棋力也…

Linux——静态库

Linux——静态库 静态库分析一下 ar指令生成静态库静态库的使用第三方库优化一下 gcc -I(大写的i) -L -l(小写的l)&#xff0c;头文件搜索路径&#xff0c;库文件搜索路径&#xff0c;连接库 今天我们来学习静态库的基本知识。 静态库 在了解静态库之前&#xff0c;我们首先来…

冯诺依曼体系结构 计算机组成的金字塔

01 冯诺依曼体系结构&#xff1a;计算机组成的金字塔 学习计算机组成原理&#xff0c;到底是在学些什么呢&#xff1f;这个事儿&#xff0c;一两句话还真说不清楚。不过没关系&#xff0c;我们先从“装电脑”这个看起来没有什么技术含量的事情说起&#xff0c;来弄清楚计算机到…

Linux的进程

在Linux中&#xff0c;可以使用多种方式来结束进程。以下是8种常见的方式&#xff1a; 终端中断&#xff08;Ctrl C&#xff09;&#xff1a;在终端中运行的程序可以通过按下Ctrl C组合键来发送SIGINT信号&#xff0c;终止该进程的执行。 kill命令&#xff1a;使用kill命令可…

汉诺塔问题—java详解(附源码)

来源及应用 相传在古印度圣庙中&#xff0c;有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上&#xff0c;有三根杆(编号A、B、C)&#xff0c;在A杆自下而上、由大到小按顺序放置64个金盘(如图1)。游戏的目标&#xff1a;把A杆上的金盘全部移到C杆上&#xff0c;并仍…