挑战杯 基于深度学习的植物识别算法 - cnn opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tfimport numpy as npfrom tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  


4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数loss = torch.nn.BCELoss()l = loss(pred,real)# 多分类损失函数loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/270482.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Xilinx高级调试方法--远程调试

Xilinx高级调试方法--远程调试 1 虚拟电缆调试2 FPGA设计2.1 扩展配置接口 3 PCIe-XVC驱动3.1 PCIe-XVC驱动3.2 XVC-Server 4 Vivado Design Suite4.1 同一台主机4.2 不同主机 本文主要介绍Xilinx的一些高级调试方法&#xff0c;以及如何使用Xilinx的相关IP。 1 虚拟电缆调试 …

Java基础知识点

Java基础知识点 1.方法重载和重写的区别 方法重载&#xff1a; 同一个类中的方法&#xff0c;方法名相同&#xff0c;返回值可以相同可以不同&#xff0c;参数列表必须不同发生在编译期&#xff0c;在编译期确定执行哪个方法 方法重写&#xff1a; 指的是子类重新定义父类…

探索c++——了解c++的魅力

前言&#xff1a;c是一门既面向对象又面向过程的语言。 不同于java纯粹的面向对象和c纯粹的面向过程。 造成c该特性的原因是c是由本贾尼大佬在c的基础上增添语法创建出来的一门新的语言。 它既兼容了c&#xff0c; 身具面向过程的特性。 又有本身的面向对象的特性。 面向对象和…

Wireshark_labs TCP

在本实验中&#xff0c;我们将详细研究著名的TCP协议的行为。我们将通过从您的电脑向远程服务器传输一份150KB 的文件(一份Lewis Carrol 的“爱丽丝梦游仙境”文本)&#xff0c; 并分析TCP传输内容的发送和接收过程来实现。我们将研究TCP对序列和确认号的使用&#xff0c;以提供…

Python 系统学习总结(基础语法+函数+数据容器+文件+异常+包+面向对象)

&#x1f525;博客主页&#xff1a; A_SHOWY&#x1f3a5;系列专栏&#xff1a;力扣刷题总结录 数据结构 云计算 数字图像处理 力扣每日一题_ 六天时间系统学习Python基础总结&#xff0c;目前不包括可视化部分&#xff0c;其他部分基本齐全&#xff0c;总结记录&#xff0…

Python与FPGA——膨胀腐蚀

文章目录 前言一、膨胀腐蚀二、Python实现腐蚀算法三、Python实现膨胀算法四、Python实现阈值算法五、FPGA实现腐蚀算法总结 前言 腐蚀是指周围的介质作用下产生损耗与破坏的过程&#xff0c;如生锈、腐烂等。而腐蚀算法也类似一种能够产生损坏&#xff0c;抹去部分像素的算法。…

SoundTouch对音频处理(Android)

SoundTouch对音频处理&#xff08;Android&#xff09; SoundTouch介绍 SoundTouch 是一个用于音频处理的开源库&#xff0c;主要用于改变音频的速度、音调和音量等特征。您可以在项目中使用 SoundTouch 库来实现音频处理的功能&#xff0c;比如变速播放、音高变化、混响效果…

Redis(5.0)

1、什么是Redis Redis是一种开源的、基于内存、支持持久化的高性能Key-Value的NoSQL数据库&#xff0c;它同时也提供了多种数据结构来满足不同场景下的数据存储需求。 2、安装Redis&#xff08;Linux&#xff09; 2.1、去官网&#xff08;http://www.redis.cn/&#xff09;下…

新品发布会注意事项有哪些?如何邀约媒体到场发布

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 新品发布会的注意事项以及邀约媒体到场发布的方法如下&#xff1a; 一、新品发布会注意事项&#xff1a; 明确活动目的和主题&#xff1a;确定新品发布会要传达的信息和目标&#xff0c;…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:TapGesture)

支持单击、双击和多次点击事件的识别。 说明&#xff1a; 从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 接口 TapGesture(value?: { count?: number, fingers?: number }) 参数&#xff1a; 参数名称参数类型必填参…

数学建模【模糊综合评价分析】

一、模糊综合评价分析简介 提到模糊综合评价分析&#xff0c;就先得知道模糊数学。1965年美国控制论学家L.A.Zadeh发表的论文“Fuzzy sets”标志着模糊数学的诞生。 模糊数学又称Fuzzy数学&#xff0c;是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在…

OpenHarmony教程指南—Navigation开发 页面切换场景范例

简介 在应用开发时&#xff0c;我们常常遇到&#xff0c;需要在应用内多页面跳转场景时中使用Navigation导航组件做统一的页面跳转管理&#xff0c;它提供了一系列属性方法来设置页面的标题栏、工具栏以及菜单栏的各种展示样式。除此之外还拥有动态加载&#xff0c;navPathSta…

【视频转码】基于RK3588的视频转码探索

传统的视频转码服务基本都是基于X86下CPU、GPU转码&#xff0c;对硬件性能、功耗、成本来说都比较高。从技术角度来说现有视频转码技术有&#xff1a; 视频编码转变&#xff1a; 1. H.264 > H.265 保持视频分辨率、清晰度不变情况下&#xff0c;更改视频压缩方式&#xff0…

Tomcat SSL证书申请指南2024版本

1. 注册并登录51SSL 2. 申请证书 在订单管理中点击申请证书&#xff0c;买个便宜的就行 填写信息后提交即可&#xff1a; 3. 域名验证 为域名增加一个解析&#xff0c;按上面的记录信息。 点击订单详情里面的获取验证信息如下&#xff1a; 将上述信息放入阿里云 修改后&…

mysql 数据库查询 查询字段用逗号隔开 关联另一个表并显示

文章目录 问题描述解决方案 问题描述 如下如所示&#xff1a; 表一&#xff1a;wechat_dynamically_config表&#xff0c;重点字段&#xff1a;wechat_object 表二&#xff1a;wechat_object表&#xff0c;重点字段&#xff1a;wxid 需求&#xff1a;根据wechat_dynamically_…

3.5日常学习

matlab处理数据 自己写了关于detect_data的函数&#xff0c;让它帮我改了&#xff0c;哈哈哈 %改正前function data_chuli(path1,savepath)[num]xlsread(path1,1,B18:F23);a num;ba;cb(:);xlswrite(savepath,c) end%改正后function data_chuli(path1, savepath)num xlsread…

工业网关、物联网网关与PLC网关是什么?

网关是什么&#xff1f; 网关是一种用于连接不同网络的网络设备&#xff0c;其作用是实现网络之间的通信和数据交换。它负责将一个网络的数据转发到另一个网络&#xff0c;并且可以进行路由、转换和过滤等处理。通常用于连接局域网和广域网之间&#xff0c;可以是硬件设备或者软…

植被净初级生产力与多时间尺度干旱关系的定量研究

随着全球气候变暖的趋势愈发明显&#xff0c;干旱事件不仅发生的频率增加&#xff0c;其持续时间和影响范围也在不断扩大。干旱对生态环境造成了严重破坏&#xff0c;导致生物多样性减少、土地退化和水资源短缺&#xff1b;对农业生产而言&#xff0c;干旱会导致作物减产甚至绝…

kafka报文模拟工具的使用

日常项目中经常会碰到消费kafka某个topic的数据&#xff0c;如果知道报文格式&#xff0c;即可使用工具去模拟发送报文&#xff0c;以此测试代码中是否能正常消费到这个数据。 工具资源已上传&#xff0c;可直接访问连接下载&#xff1a;https://download.csdn.net/download/w…

SpringBoot集成ElasticSearch(ES)

ElasticSearch环境搭建 采用docker-compose搭建&#xff0c;具体配置如下&#xff1a; version: 3# 网桥es -> 方便相互通讯 networks:es:services:elasticsearch:image: registry.cn-hangzhou.aliyuncs.com/zhengqing/elasticsearch:7.14.1 # 原镜像elasticsearch:7.…