ARM TrustZone技术解析:构建嵌入式系统的安全扩展基石

](https://img-home.csdnimg.cn/images/20220524100510.png#pic_center)

🌈个人主页: Aileen_0v0
🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL|
💫个人格言:“没有罗马,那就自己创造罗马~”

铁黄 iron oxide yellow

文章目录

  • `1、背景:`
    • `1.1、ARM Trustzone的安全扩展简介`
    • `1.2、ARM Trustzone的安全扩展详细解剖`
    • `1.3、 AMBA-AXI对Trustzone的支持`
    • `1.4Processor的SCR.NS比特位`
  • `2.TZC400和TZPC简介`
    • `2.1 MMU对Trustzone的支持`
    • `2.2 cache对Trustzone的支持`
    • `2.3 TLB对Trustzone的支持`
    • `2.4 gicv的安全中断`
  • `3.ARM Trustzone技术对软件带来的变化`
    • `3.1、EL3 is AArch64:`
    • `3.2、EL3 is AArch32:`
    • `3.3、armv7:`
  • ` 思考:通过MMU/TLB/Cache对安全内存攻击的可能性`

说明: 在默认情况下,本文讲述的都是ARMV8-aarch64架构,linux kernel 64位

请添加图片描述

1、背景:

随着时代的发展、科技的进步,安全需求的趋势也越来越明显,ARM也一直在调整和更新其新架构,很多都是和安全相关的。 如下列出了一些和安全相关的架构

Trustzone做为ARM安全架构的一部分,从 2008 年 12月 ARM 公司第一次 release Trustzone 技术白皮书。() 2013 年 Apple 推出了第一款搭载指纹解锁的 iPhone:iPhone 5s,用以保证指纹信息安全的 Secure Enclave 技术据分析深度定制了 ARM trustzone 架构,印象中这大概是 Trustzone 技术第一次走进大众视线。到如今 Trustzone 技术已经成为移动安全领域的重要基础技术,你也许不了解它的技术原理,但它一直默默为你守护你的指纹信息,账户密码等各种敏感数据。 如下也列出了一张在Trustzone架构下的一张指纹的框图,这也是这些年(2015-至今)比较流行的一张软件框图。

1.1、ARM Trustzone的安全扩展简介

从上文我们已经知道, ARM Trustzone不具体指一个硬件,也不是一个软件,而是一个技术架构,在支持ARM Trustzone的SOC中,需按照ARM Trustzone技术对各个子模块进行设计。如下便展示了一个SOC的Trustzone架构下的设计框图

在这里插入图片描述 其中:

  • (1)、AMBA-AXI总线的扩展, 增加了标志secure读和写地址线:AWPROT[1]和ARPROT[1]
  • (2)、processor的扩展(或者说master的扩展),在ARM Core内部增加了SCR.NS比特位,这样ARM Core发起的操作就可以被标记“是以secure身份发起的访问,还是以non-secure身份发起的访问”
  • (3)、TZPC扩展,在AXI-TO-APB端增加了TZPC,用于配置apb controller的权限(或者叫secure controller),例如将efuse(OTP Fuse)配置成安全属性后,那么processor以non-secure发起的访问将会被拒绝,非法的访问将会返回给AXI总线一个错误。
  • (4)、TZASC扩展,在DDRC(DMC)之上增加一个memory filter,现在一般都是使用TZC400,或由SOC厂商自己设计一个这样的IP,或叫MPU,或集成在DMC内部,它的作用一般就是配置DDR的权限。 如果配置了DDR中某块region为安全属性,那么processor以non-secure发起的访问将会被拒绝。
  • (5)、MMU/Cache对安全扩展的支持 在软件架构的设计中,就分为: Non-secure EL0&1 Transslation Regime 和 Secure EL0&1 Transslation Regime,即normal world和secure world侧使用不同的Transslation Regime,其实就是使用不同的TTBRx_ELn寄存器,使用不同得页表。 注意:在armv7上,TTBRx_EL0、TTBRx_EL1是banked by Security State,也就是说在安全世界和非安全世界各有一组这样的寄存器,所以在linux和tee中可以各自维护一张自己的内存页表. 在armv8/armv9上,TTBRx_EL0、TTBRx_EL1不再是banked了,但是world switch时会在ATF中switch cpu context, 所以从hypervisror或os的视角来看,依然还是两套不同的TTBRx_ELn寄存器,linux和tee各有各的页表。 而在TLB中,又为每一个entry增加了Non-secure属性位,即标记当前翻译出的物理地址是secure还是non-secure; cache的扩展:在cache的entry中的TAG中,有一个NON-Secure Identifier标记为,表示当前缓存数据的物理地址是属于non-secure还是secure。
  • (6)、gic对安全扩展的支持,在gicv2、gicv3的版本中,都增加了对安全扩展的支持. 以gicv3为例,将中断划分成了group0、secure group1和non-secure group1. 在软件的配置下,group0和secure group1的中断将不会target到REE(linux)中处理

1.2、ARM Trustzone的安全扩展详细解剖

1.3、 AMBA-AXI对Trustzone的支持

ARPROT[2:0]和AWPROT[2:0] 分别是读通道和写通道中的关于权限的信号,例如他们中的BIT[1]则分别表示正是进行secure身份的读或secure身份的写操作。

1.4Processor的SCR.NS比特位

SCR_EL3.NS 表示当前processor的安全状态,NS=1表示是non-secure的,NS=0表示是Secure的 在这里插入图片描述

2.TZC400和TZPC简介

TZC400接在core和(DMC)DDR之间,相当于一个memory filter。 TZC400一般可以配置8个region(算上特殊region0, 也可以说9个),然后可以对每一个region配置权限。例如讲一块region配置成secure RW的,那么当有non-secure的master来访问这块内存时,将会被TZC挡住。 在这里插入图片描述

2.1 MMU对Trustzone的支持

首页,在软件架构的设计中,就分为: Non-secure EL0&1 Transslation Regime 和 Secure EL0&1 Transslation Regime,即normal world和secure world侧使用不同的Transslation Regime;
其实就是使用不同的TTBRx_ELn寄存器,使用不同得页表 其次,在MMU使用的页表中,也有NS比特位。
Non-secure Transslation Regime 只能翻译NS=1的页表项,secure Transslation Regime 可以翻译NS=1和NS=0的页表项。
即secure的页表可以映射non-secure或secure的内存,而non-secure的页表只能去映射non-secure的内存,否则在转换时会发生错误 在这里插入图片描述 在Page Descriptor中(页表entry中),有NS比特位(BIT[5]),表示当前的映射的内存属于安全内存还是非安全内存:

2.2 cache对Trustzone的支持

如下所示,以为cortex-A78为例,L1 Data Cache TAG中 ,有一个NS比特位(BIT[33]),表示当前缓存的cacheline是secure的还是non-secure的 在这里插入图片描述

2.3 TLB对Trustzone的支持

如下所示,以为cortex-A78为例,L1 Data TLB entry中 ,有一个NS比特位(BIT[35]),表示当前缓存的entry是secure的还是non-secure的

在这里插入图片描述

2.4 gicv的安全中断

在gicv2/gicv3中,支持了安全中断,配置有如下: (1)、Group分组(GICD_IGROUPRn) – gicv2 ◾group0:安全中断,由nFIQ驱动 ◾group1:非安全中断,由nIRQ驱动

(2)、Group分组(GICD_IGROUPRn)– gicv3 ◾group0:安全中断 ◾non-secure group1:非安全中断 ◾secure group1:安全中断

3.ARM Trustzone技术对软件带来的变化

ARM Trustzone技术对软件框架带来了变化

3.1、EL3 is AArch64:

3.2、EL3 is AArch32:


AArch32和AArch64 secure monitor的理解:

  • 如果secureos和monitor都是64位,secureos跑在el1, monitor跑在el3;- 如果secureos和monitor都是32位,secureos和monitor都跑在EL3(secureos在svc模式、monitor在svc模式),它俩共用页表;- 如果monitor是64位,secureos是32位,那么secureos跑在svc模式(el1),monitor跑在el3,他俩不共用页表

3.3、armv7:

思考:通过MMU/TLB/Cache对安全内存攻击的可能性

在安全架构的设计时,我们在Core和DDR之间增加了一个TZC做为memory filter,数据流为:Core ---> TZC---->DDR, 这种架构下,core以非安全身份发起的对安全内存的读写,将会被TZC挡住。

但是这都是在理想的情况下,事实上Core发起对内存的读写,未必经过TZC未必到DDR,有可能到cache阶段就完成了,即数据流变成了Core ---> MMU(TLB+Addtress Translation)---->Cache,那么这种情况下,没有TZC的事了,你也许会说MMU/Cache中都有NS比特,但是你真的理解这里NS比特的用法吗? 如果core以非安全身份对安全内存发起的读写时,我强制将MMU页表中的安全属性标记位强制改成NS=0,会如何呢?

在这里插入图片描述

事实上我们只要理清原理、理清数据流 ,就不会问上面那么S13的问题了。 下面来开始剖析:

假设一个安全core 读取了一个安全物理内存0x2000_0000数据(虚拟地址可能是0x_xxxx_xxxx),那么将产生一下行为:

  • 在读写之前,势必做好了MMU map,如物理地址0x2000_0000 MAP成了0x_xxxx_xxxx地址, 此时Page Descriptor中的atrribute中的NS=0- TLB缓存该翻译,即TLB的entry中包含: 0x2000_00000x_xxxx_xxxxNS=0- 安全内存0x2000_0000数据将会被缓存到cache中,entry中的TAG包含0x2000_0000NS=0
    同时,我有一个非安全core 发起读写虚拟地址0x_yyyy_yyyy,我自行修改该页表,让0x_yyyy_yyyy强制映射到安全物理内存0x2000_0000,此时有两种配置: (1)、0x_yyyy_yyyy0x2000_0000, NS=0 (2)、0x_yyyy_yyyy0x2000_0000, NS=1 我们分别看下这两种配置,是否能读到安全内存: 针对(1),非安全的core发起访问,发现TLB中的条目是0x_yyyy_yyyy0x2000_0000, NS=0,自然不会被命中,然后使用Address Translation转换,MMU发现非安全的Core要来访问安全属性NS=0 将会被直接拒绝掉。 针对(2),非安全的core发起访问,由于NS=1,TLB可能会被命中,即能翻译出0x2000_0000物理地址来,即使没有被命中,在经过Address Translation转换,由于NS=1,此时也是可以正确转换出正确的0x2000_0000物理地址。 然后接着会去cache中查询这个地址,但是此时cache的entry中的NS=0,所以cache不会被命中,接下来就要走TZC流程了,很显然,你一个非安全的core想访问安全的内存,TZC将会挡住你。
综上所述:安全就是安全,不要再想漏洞了。

](https://img-home.csdnimg.cn/images/20220524100510.png#pic_center)

](https://img-home.csdnimg.cn/images/20220524100510.png#pic_center)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/273403.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云k8s环境下,因slb限额导致的发布事故

一、背景 阿里云k8s容器,在发布java应用程序的时候,客户端访问出现500错误。 后端服务是健康且可用的,网关层大量500错误请求,slb没有流入和流出流量。 经过回滚,仍未能解决错误。可谓是一次血的教训,特…

使用C#创建服务端Web API

前言 C# Web API 是一种基于 .NET 平台(包括但不限于.NET Framework 和 .NET Core)构建 HTTP 服务的框架,用于创建 RESTful Web 服务。REST(Representational State Transfer)是一种软件架构风格,它利用HT…

(黑马出品_04)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

(黑马出品_04)SpringCloudRabbitMQDockerRedis搜索分布式 微服务技术异步通信 今日目标1.初识MQ1.1.同步和异步通讯1.1.1.同步通讯1.1.2.异步通讯 1.2.技术对比 2.快速入门2.1.安装RabbitMQ2.1.1.单机部署(1).下载镜像方式…

【Tauri】(4):整合Tauri和actix-web做本地大模型应用开发,可以实现session 登陆接口,完成页面展示,进入聊天界面

1,视频地址 https://www.bilibili.com/video/BV1GJ4m1Y7Aj/ 【Tauri】(4):整合Tauri和actix-web做本地大模型应用开发,可以实现session 登陆接口,完成页面展示,进入聊天界面 使用国内代理进行加…

数据结构 - 堆

这篇博客将介绍堆的概念以及堆的实现。 1. 堆的定义: 首先堆的元素按照是完全二叉树的顺序存储的。 且堆中的某个节点总是不大于或不小于其父节点的值。 根节点最大的堆叫做大堆,根节点最小的堆叫小堆。逻辑结构如下图所示: 大堆和小堆的…

VBA_NZ系列工具NZ02:VBA读取PDF使用说明

我的教程一共九套及VBA汉英手册一部,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到数据库,到字典,到高级的网抓及类的应用。大家在学习的过程中可能会存在困惑,这么多知识点该如何组织…

使用IDEA远程Debug调试

文章目录 背景配置IDEA设置启动脚本改造 细节细节1:停在本地断点,关闭程序后会继续执行吗?细节2:jar包代码和本地不一致会怎么样?细节3:日志打印在哪里?细节4:调试时其他人会不会卡住&#xff…

【Prometheus】k8s集群部署node-exporter

​ 目录 一、概述 1.1 prometheus简介 1.2 prometheus架构图 1.3 Exporter介绍 1.4 监控指标 1.5 参数定义 1.6 默认启用的参数 1.7 prometheus如何收集k8s/服务的–三种方式收集 二、安装node-exporter组件 【Prometheus】概念和工作原理介绍-CSDN博客 【云原生】ku…

【STM32】HAL库 CubeMX 教程 --- 高级定时器 TIM1 定时

实验目标: 通过CUbeMXHAL,配置TIM1,1s中断一次,闪烁LED。 一、常用型号的TIM时钟频率 1. STM32F103系列: 所有 TIM 的时钟频率都是72MHz;F103C8不带基本定时器,F103RC及以上才带基本定时器。…

C++11——智能指针

本文将解决一下几个问题 1.什么是智能指针 2.为什么需要之智能指针 3.智能指针的使用场景 智能指针 RAII:是一种利用对象声明周期来控制的程序资源(如内存、文件句柄、网络连接、互斥量等)的技术 在对象构造的时候获取资源,接…

Navicat、phpMyAdmin本地安装

一、Navicat安装 注:本次关于Navicat的安装版本为Navicat160的windows版本 1、从官方下载安装包并安装 官方下载链接为 ​​https://download.navicat.com.cn/download/navicat160_premium_cs_x64.exe​​ 下载完成后,直接进行安装即可(…

Unity 整体界面淡入淡出效果

在Unity中,如果我们要实现控制多个组件同时淡出,同时淡入的效果,可以使用DOTween插件实现。 如图,一个页面中带有背景,一张图片,一个文本,一个滑动条。 要实现以上界面的整体淡入淡出&#xff…

C语言连接【MySQL】

稍等更新图片。。。。 文章目录 安装 MySQL 库连接 MySQLMYSQL 类创建 MySQL 对象连接数据库关闭数据库连接示例 发送命令设置编码格式插入、删除或修改记录查询记录示例 参考资料 安装 MySQL 库 在 CentOS7 下,使用命令安装 MySQL: yum install mysq…

R语言:多值提取到点

ArcGIS中有相关工具实现多值提取到点的功能&#xff0c;在这里&#xff0c;我将使用R语言进行操作&#xff1a; library(dplyr) library(readxl) library(sf) library(raster)setwd("D:/Datasets") Bio <- stack(paste0("D:/Datasets/Data/worldclim2_1km/…

【C++】了解一下STL

个人主页 &#xff1a; zxctscl 如有转载请先通知 STL 1. 什么是STL2. STL的版本3. STL的六大组件4. STL的重要性5. 如何学习STL6. STL的缺陷 1. 什么是STL STL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的组件…

SkyEye:助力飞行器状态控制系统仿真

飞行器与常见的航天器一样&#xff0c;属于安全关键领域的大型复杂设备&#xff0c;对安全性、可靠性有着极高的要求。为保证稳定飞行&#xff0c;需要对目标对象进行实时跟踪&#xff0c;通过发出正确的修正偏差指令来操纵飞行器改变飞行姿态&#xff0c;因此对飞行器状态控制…

SSM框架,MyBatis-Plus的学习(下)

条件构造器 使用MyBatis-Plus的条件构造器&#xff0c;可以构建灵活高效的查询条件&#xff0c;可以通过链式调用来组合多个条件。 条件构造器的继承结构 Wrapper &#xff1a; 条件构造抽象类&#xff0c;最顶端父类 AbstractWrapper &#xff1a; 用于查询条件封装&#xf…

堆宝塔(Python)

作者 陈越 单位 浙江大学 堆宝塔游戏是让小朋友根据抓到的彩虹圈的直径大小&#xff0c;按照从大到小的顺序堆起宝塔。但彩虹圈不一定是按照直径的大小顺序抓到的。聪明宝宝采取的策略如下&#xff1a; 首先准备两根柱子&#xff0c;一根 A 柱串宝塔&#xff0c;一根 B 柱用于…

python INI文件操作与configparser内置库

目录 INI文件 configparser内置库 类与方法 操作实例 导入INI文件 查询所有节的列表 判断某个节是否存在 查询某个节的所有键的列表 判断节下是否存在某个键 增加节点 删除节点 增加节点的键 修改键值 保存修改结果 获取键值 获取节点所有键值 其他读取方式 …

Python SSH协议库之paramiko使用详解

概要 在网络编程中,远程操作是一项非常常见的需求,特别是在服务器管理和自动化任务执行方面。Python提供了许多库来实现远程操作,其中Paramiko是一个备受欢迎的选择。Paramiko是一个纯Python编写的SSH协议库,它提供了一种简单而强大的方式来执行远程命令、上传和下载文件等…