OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像

若该文为原创文章,转载请注明原文出处
本文章博客地址:https://hpzwl.blog.csdn.net/article/details/136616551
各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究
红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…(点击传送门)

OpenCV开发专栏(点击传送门)

上一篇:《OpenCV开发笔记(七十六):相机标定(一):识别棋盘并绘制角点》
下一篇:持续补充中…


前言

  通过相机图片可以识别出棋盘角点了,这时候我们需要通过角点去计算相机内参矩阵,通过上篇得知畸变的原理,所以我们尽可能要全方位都能获取标定图片,全方位意思是提供的多张图综合起来基本覆盖了相机所有的像素,同时还要注意远近和斜着
  本篇通过一张图片来识别计算得到相机内参矩阵,并矫正相机畸形。


补充

  做项目一定要多张且基本覆盖相机所有区域,要保证每一张截取的图片也要被识别,可以做成个软件,识别出棋盘都在一个预先指定的区域内则截图,然后下一个区域,实现半自动半人工化标定。


Demo

  在这里插入图片描述

  这里只用了一张图校准,所以可能内参矩阵经度不那么高:
   在这里插入图片描述


一张图校准的实例

   注意:这里demo只使用了可识别的一张图作为计算,可能没覆盖的区域则出现不可预期的图像问题。

步骤一:世界坐标系初始化

   这里是直接填充行列的坐标,第三个是z坐标直接设置为0,为视口处:

// 步骤八:角点对应的三维坐标(一张图一组)
std::vector<std::vector<cv::Point3f>> vectorObjectPoint;
std::vector<cv::Point3f> objectPoints;  // 三维世界坐标系
for(int i = 0; i < chessboardRowCornerCount; i++)
{for(int j = 0; j < chessboardColCornerCount; j++){objectPoints.push_back(cv::Point3f(j, i, 0));}
}
vectorObjectPoint.push_back(objectPoints);

步骤二:识别的角点放入列表

   多张图放入多次,这里只有一张图:

// 步骤九:图像识别出来的角点(一张图一组)
std::vector<std::vector<cv::Point2f>> vectorImagePoint;
vectorImagePoint.push_back(vectorPoint2fCorners);

步骤三:计算内参和畸变系数

   输出的参数有点多,输入的参数却不多:

// 步骤十:计算内参和畸变系数
cv::Mat cameraMatrix;                   // 相机矩阵(接收输出)
cv::Mat distCoeffs;                     // 畸变系数(接收输出)
cv::Mat Rotate;                         // 旋转量(接收输出)
cv::Mat Translate;                      // 偏移量(接收输出)
cv::calibrateCamera(vectorObjectPoint,vectorImagePoint,grayMat.size(),cameraMatrix,distCoeffs,Rotate,Translate);
std::cout << "cameraMatrix:" << std::endl;
std::cout << cameraMatrix << std::endl;std::cout << "distCoeffs:" << std::endl;
std::cout << distCoeffs << std::endl;std::cout << "Rotate:" << std::endl;
std::cout << Rotate << std::endl;std::cout << "Translate:" << std::endl;
std::cout << Translate << std::endl;

步骤四:畸变函数校准

   这里校准相对容易,所以难点在于标定校准,做项目肯定要自己写一个标定软件了,每次这么手动查看校准肯定不行的。

// 步骤十一:畸变图像校准
cv::Mat dstMat;
cv::undistort(srcMat, dstMat, cameraMatrix, distCoeffs);
cv::imshow("6", dstMat);

函数原型

calibrateCamera:相机标定求解函数

   OpenCV中的一个函数,用于相机标定。相机标定是估计相机内参(如焦距、主点坐标等)和畸变系数的过程,这些参数对于后续的图像处理任务(如三维重建、目标跟踪等)至关重要。

double calibrateCamera(InputArrayOfArrays objectPoints,  InputArrayOfArrays imagePoints,  Size imageSize,  OutputArray cameraMatrix,  OutputArray distCoeffs,  OutputArray rvecs,  OutputArray tvecs,  int flags=0,  TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6));

   参数说明:

  • objectPoints:世界坐标系中的三维点。通常,这些点是通过在标定板上定义的一系列点来获取的,这些点的坐标是已知的。对于每个图像,它应该是一个 Nx3 的数组(或数组列表),其中 N 是点的数量,而 3 表示每个点的 (X, Y, Z) 坐标。
  • imagePoints:图像坐标系中的二维点,即对应于 objectPoints 中的三维点在图像中的投影。对于每个图像,它应该是一个 Nx2 的数组(或数组列表),其中 N 是点的数量,而 2 表示每个点的 (x, y) 坐标。
  • imageSize:图像的大小,表示为 Size 类型的对象,包含图像的宽度和高度。
  • cameraMatrix:输出参数,存储 3x3 的相机内参矩阵。
  • distCoeffs:输出参数,存储畸变系数。通常有 5 个系数(k1, k2, p1, p2, k3)对于径向和切向畸变,或 8 个系数(k1, k2, k3, k4, k5, k6, p1, p2)对于鱼眼相机模型。
  • rvecs:输出参数,对于每个图像,存储旋转向量的数组。
  • tvecs:输出参数,对于每个图像,存储平移向量的数组。
  • flags:不同标志的组合,用于指定标定过程中使用的算法。
    CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,将包含有效的fx,fy,cx,cy的估计值的内参矩阵cameraMatrix,作为初始值输入,然后函数对其做进一步优化。如果不使用这个参数,用图像的中心点初始化光轴点坐标(cx, cy),使用最小二乘估算出fx,fy(这种求法好像和张正友的论文不一样,不知道为何要这样处理)。注意,如果已知内部参数(内参矩阵和畸变系数),就不需要使用这个函数来估计外参,可以使用solvepnp()函数计算外参数矩阵。
    CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点,光轴点将保持为图像的中心点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,保持为输入的值。
    CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当 CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy的实际输入值将会被忽略,只有fx/fy的比值被计算和使用。
    CV_CALIB_ZERO_TANGENT_DIST:切向畸变系数(P1,P2)被设置为零并保持为零。
    CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变系数在优化中保持不变。如果设置了CV_CALIB_USE_INTRINSIC_GUESS参数,就从提供的畸变系数矩阵中得到。否则,设置为0。
    CV_CALIB_RATIONAL_MODEL(理想模型):启用畸变k4,k5,k6三个畸变参数。使标定函数使用有理模型,返回8个系数。如果没有设置,则只计算其它5个畸变参数。
    CALIB_THIN_PRISM_MODEL (薄棱镜畸变模型):启用畸变系数S1、S2、S3和S4。使标定函数使用薄棱柱模型并返回12个系数。如果不设置标志,则函数计算并返回只有5个失真系数。
    CALIB_FIX_S1_S2_S3_S4 :优化过程中不改变薄棱镜畸变系数S1、S2、S3、S4。如果cv_calib_use_intrinsic_guess设置,使用提供的畸变系数矩阵中的值。否则,设置为0。
    CALIB_TILTED_MODEL (倾斜模型):启用畸变系数tauX and tauY。标定函数使用倾斜传感器模型并返回14个系数。如果不设置标志,则函数计算并返回只有5个失真系数。
    CALIB_FIX_TAUX_TAUY :在优化过程中,倾斜传感器模型的系数不被改变。如果cv_calib_use_intrinsic_guess设置,从提供的畸变系数矩阵中得到。否则,设置为0。
  • criteria:迭代优化的终止条件。通常包含最大迭代次数和收敛的精度。

   这个函数返回一个双精度浮点数,表示重投影误差的估计值,即实际图像点与通过相机参数和畸变系数计算出的图像点之间的平均误差。
   为了获得准确的相机标定结果,通常需要多个视图(即多张不同角度和姿态拍摄的标定板图像),**并确保标定板在不同图像中占据足够的视场。**此外,图像应该清晰,且标定板上的特征点(如棋盘格的角点)应准确检测。

initUndistortRectifyMap:计算畸变参数

   OpenCV中用于初始化用于图像去畸变和校正的映射表的函数。这个函数的目的是生成两个映射,一个用于x坐标,另一个用于y坐标,它们可以被用于 remap函数来校正图像的畸变。

void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs, InputArray R, InputArray newCameraMatrix, Size size, int m1type, OutputArray map1, OutputArray map2)

   参数说明

  • cameraMatrix:相机的内参矩阵,一个3x3的浮点数矩阵。
  • distCoeffs:畸变系数,一个1x5或1x8的向量,包含径向和切向畸变系数。
  • R:可选的旋转矩阵,一个3x3的浮点数矩阵,表示从原相机坐标系到新的相机坐标系的旋转。如果这个参数是空的,那么newCameraMatrix必须是cameraMatrix。
  • newCameraMatrix:新的相机内参矩阵,一个3x3的浮点数矩阵。这个矩阵可以是原始相机矩阵,或者经过getOptimalNewCameraMatrix调整后的矩阵,以考虑图像的有效视场。
  • size:输出映射的尺寸,表示为Size类型的对象,包含图像的宽度和高度。
  • m1type:输出映射的类型,可以是CV_32FC1或CV_16SC2。
  • map1:输出的第一个映射,用于x坐标,可以被传递给remap函数。
  • map2:输出的第二个映射,用于y坐标,可以被传递给remap函数。

   这两个映射map1和map2可以被传递给remap函数,以对图像进行去畸变和校正。
   如果有一个畸变的图像distortedImage和想要得到校正后的图像undistortedImage,可以这样使用这两个函数:

Mat map1,map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, CV_32FC1, map1, map2);  
remap(distortedImage, undistortedImage, map1, map2, INTER_LINEAR);

   在这个例子中,INTER_LINEAR是插值方法的类型,用于remap函数。其他的插值方法,如INTER_NEAREST、INTER_CUBIC等也可以被使用,具体取决于应用需求。


Demo源码

void OpenCVManager::testCorrectingChessboard()
{
#define TestCorrectingChessboardUseCamera 0
#if !TestCorrectingChessboardUseCamera// 使用图片
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/chessboard.png";
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/24.jpg";
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/27.png";
//    std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/28.png";std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/28.jpg";cv::Mat srcMat = cv::imread(srcFilePath);
#else// 使用摄像头cv::VideoCapture capture;// 插入USB摄像头默认为0if(!capture.open(0)){qDebug() << __FILE__ << __LINE__  << "Failed to open camera: 0";}else{qDebug() << __FILE__ << __LINE__  << "Succeed to open camera: 0";}while(true){cv::Mat srcMat;capture >> srcMat;
#endifint chessboardColCornerCount = 6;int chessboardRowCornerCount = 9;
//    int chessboardColCornerCount = 7;
//    int chessboardRowCornerCount = 7;// 步骤一:读取文件
//    cv::imshow("1", srcMat);
//    cv::waitKey(0);
//     步骤二:缩放,太大了缩放下(可省略)cv::resize(srcMat, srcMat, cv::Size(srcMat.cols / 2, srcMat.rows / 2));cv::Mat srcMat2 = srcMat.clone();cv::Mat srcMat3 = srcMat.clone();cv::imshow("2", srcMat);
//    cv::waitKey(0);// 步骤三:灰度化cv::Mat grayMat;cv::cvtColor(srcMat, grayMat, cv::COLOR_BGR2GRAY);cv::imshow("3", grayMat);
//    cv::waitKey(0);// 步骤四:检测角点std::vector<cv::Point2f> vectorPoint2fCorners;bool patternWasFound = false;patternWasFound = cv::findChessboardCorners(grayMat,cv::Size(chessboardColCornerCount, chessboardRowCornerCount),vectorPoint2fCorners,cv::CALIB_CB_ADAPTIVE_THRESH | cv::CALIB_CB_FAST_CHECK | cv::CALIB_CB_NORMALIZE_IMAGE);/*enum { CALIB_CB_ADAPTIVE_THRESH = 1,    // 使用自适应阈值将图像转化成二值图像CALIB_CB_NORMALIZE_IMAGE = 2,    // 归一化图像灰度系数(用直方图均衡化或者自适应阈值)CALIB_CB_FILTER_QUADS    = 4,    // 在轮廓提取阶段,使用附加条件排除错误的假设CALIB_CB_FAST_CHECK      = 8     // 快速检测};*/cvui::printf(srcMat, 0, 0, 1.0, 0xFF0000, "found = %s", patternWasFound ? "true" : "false");cvui::printf(srcMat, 0, 24, 1.0, 0xFF0000, "count = %d", vectorPoint2fCorners.size());qDebug() << __FILE__ << __LINE__ << vectorPoint2fCorners.size();// 步骤五:绘制棋盘点cv::drawChessboardCorners(srcMat2,cv::Size(chessboardColCornerCount, chessboardRowCornerCount),vectorPoint2fCorners,patternWasFound);
#if TestCorrectingChessboardUseCameracv::imshow("0", srcMat);cv::imshow("4", srcMat2);if(!patternWasFound){cv::imshow("5", srcMat3);cv::waitKey(1);continue;}
#endif// 步骤六:进一步提取亚像素角点cv::TermCriteria criteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,   // 类型30,                                   // 参数二: 最大次数0.001);                               // 参数三:迭代终止阈值/*#define CV_TERMCRIT_ITER    1                   // 终止条件为: 达到最大迭代次数终止#define CV_TERMCRIT_NUMBER  CV_TERMCRIT_ITER    //#define CV_TERMCRIT_EPS     2                   // 终止条件为: 迭代到阈值终止*/qDebug() << __FILE__ << __LINE__ << vectorPoint2fCorners.size();cv::cornerSubPix(grayMat,vectorPoint2fCorners,cv::Size(5, 5),cv::Size(-1, -1),criteria);// 步骤七:绘制棋盘点cv::drawChessboardCorners(srcMat3,cv::Size(chessboardColCornerCount, chessboardRowCornerCount),vectorPoint2fCorners,patternWasFound);cv::imshow("5", srcMat3);
//    cv::waitKey(0);// 步骤八:角点对应的三维坐标(一张图一组)std::vector<std::vector<cv::Point3f>> vectorObjectPoint;std::vector<cv::Point3f> objectPoints;  // 三维世界坐标系for(int i = 0; i < chessboardRowCornerCount; i++){for(int j = 0; j < chessboardColCornerCount; j++){objectPoints.push_back(cv::Point3f(j, i, 0));}}vectorObjectPoint.push_back(objectPoints);// 步骤九:图像识别出来的角点(一张图一组)std::vector<std::vector<cv::Point2f>> vectorImagePoint;vectorImagePoint.push_back(vectorPoint2fCorners);// 步骤十:计算内参和畸变系数cv::Mat cameraMatrix;                   // 相机矩阵(接收输出)cv::Mat distCoeffs;                     // 畸变系数(接收输出)cv::Mat Rotate;                         // 旋转量(接收输出)cv::Mat Translate;                      // 偏移量(接收输出)cv::calibrateCamera(vectorObjectPoint,vectorImagePoint,grayMat.size(),cameraMatrix,distCoeffs,Rotate,Translate);std::cout << "cameraMatrix:" << std::endl;std::cout << cameraMatrix << std::endl;std::cout << "distCoeffs:" << std::endl;std::cout << distCoeffs << std::endl;std::cout << "Rotate:" << std::endl;std::cout << Rotate << std::endl;std::cout << "Translate:" << std::endl;std::cout << Translate << std::endl;// 步骤十一:畸变图像校准cv::Mat dstMat;cv::undistort(srcMat, dstMat, cameraMatrix, distCoeffs);cv::imshow("6", dstMat);#if TestCorrectingChessboardUseCameracv::waitKey(1);}
//    cv::imshow(_windowTitle.toStdString(), dstMat);
#elsecv::waitKey(0);
#endif
}

对应工程模板v1.68.0

  在这里插入图片描述


入坑

入坑一:无法识别图像

问题

  无法识别。
  在这里插入图片描述

原理

  要全部棋盘视野内,且可以识别,这个确实识别不了。

解决

  换图重新来过(这是笔者随便找的图)。

入坑二:校准之后四角不准

问题

  四角明显不对。
  在这里插入图片描述

原理

  这里需要多张图在能识别的情况下覆盖所有区域。

解决

  先这样,下次实际标定的时候再多张图看是否还存在该问题。


上一篇:《OpenCV开发笔记(七十六):相机标定(一):识别棋盘并绘制角点》
下一篇:持续补充中…


若该文为原创文章,转载请注明原文出处
本文章博客地址:https://hpzwl.blog.csdn.net/article/details/136616551

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/274023.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode设置setting.json

{ // vscode默认启用了根据文件类型自动设置tabsize的选项 "editor.detectIndentation": false, // 重新设定tabsize "editor.tabSize": 2, // #每次保存的时候自动格式化 // "editor.formatOnSave": true, // #每次保存的时候将代码按eslint格式…

【鸿蒙 HarmonyOS 4.0】Web组件

一、介绍 页面加载是Web组件的基本功能。根据页面加载数据来源可以分为三种常用场景&#xff0c;包括加载网络页面、加载本地页面、加载HTML格式的富文本数据。 二、加载网页 2.1、加载在线网页 Web组件的使用非常简单&#xff0c;只需要在Page目录下的ArkTS文件中创建一个…

开源好用的所见即所得(WYSIWYG)编辑器:Editor.js

文章目录 特点基于区块干净的数据 界面与交互插件标题和文本图片列表Todo表格 使用安装创建编辑器实例配置工具本地化自定义样式 今天介绍一个开源好用的Web所见即所得(WYSIWYG)编辑器&#xff1a; Editor.js Editor.js 是一个基于 Web 的所见即所得富文本编辑器&#xff0c;它…

蓝牙系列十二:协议栈ATT层分析

ATT层是一个非常重要的层&#xff0c;定义了各种属性、属性的操作方法&#xff0c;但是这些属性有什么作用&#xff0c;能给用户提供什么服务&#xff0c;它并不知道。 下面这个图是BLE协议各层跟医院的各个科室的类比图&#xff1a; 跟医院类比&#xff0c;ATT层就是化验室&a…

数据治理实践——金融行业大数据治理的方向与实践

目录 一、证券数据治理服务化背景 1.1 金融数据治理发展趋势 1.2 证券行业数据治理建设背景 1.3 证券行业数据治理目标 1.4 证券行业数据治理痛点 二、证券数据治理服务化实践 2.1 国信证券数据治理建设框架 2.2 国信证券数据治理建设思路 2.3 数据模型管理 2.4 数据…

Python的http模块requests

目录 1、安装requests模块 首先&#xff0c;确保已经安装了requests模块。如果没有安装&#xff0c;可以使用以下命令安装&#xff1a; 2、导入requests模块 在Python脚本中&#xff0c;导入requests模块&#xff1a; 3、发送HTTP请求 使用requests模块发送HTTP请求非常简单。…

【2024金三银四】

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…

Java项目源码基于springboot的家政服务平台的设计与实现

大家好我是程序员阿存&#xff0c;在java圈的辛苦码农。辛辛苦苦板砖&#xff0c;今天要和大家聊的是一款Java项目源码基于springboot的家政服务平台的设计与实现&#xff0c;项目源码以及部署相关请联系存哥&#xff0c;文末附上联系信息 。 项目源码&#xff1a;Java基于spr…

狂飙Linux平台,PostgreSQL16部署大全

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

Docker基础教程 - 12 常用容器部署-Nginx

更好的阅读体验&#xff1a;点这里 &#xff08; www.doubibiji.com &#xff09; 12 常用容器部署-Nginx 下面介绍一下常用容器的部署。可以先简单了解下&#xff0c;用到再来详细查看。 在 Docker 中部署 Nginx&#xff0c;并通过挂载方式将 Nginx 的配置文件和站点目录挂…

Day24:安全开发-PHP应用文件管理模块显示上传黑白名单类型过滤访问控制

目录 文件管理模块-上传-过滤机制 文件管理模块-显示-过滤机制 思维导图 PHP知识点 功能&#xff1a;新闻列表&#xff0c;会员中心&#xff0c;资源下载&#xff0c;留言版&#xff0c;后台模块&#xff0c;模版引用&#xff0c;框架开发等 技术&#xff1a;输入输出&#…

HybridCLR热更新介绍

官方文档 参照视频 HybridCLR介绍 HybridCLR是一个特性完整、零成本、高性能、低内存的近乎完美的Unity全平台原生c#热更方案 HybridCLR与ToLua/XLua、ILRuntime有什么不同 什么是游戏热更新&#xff1a;有热更的游戏更新流程 游戏热更新的种类 资源热更新&#xff1a;主要…

软考 系统架构设计师之回归及知识点回顾(6)

接前一篇文章&#xff1a;软考 系统架构设计师之回归及知识点回顾&#xff08;5&#xff09; 10. 边缘计算 边云协同 边缘计算与云计算各有所长&#xff0c;云计算擅长全局性、非实时、长周期的大数据处理与分析&#xff0c;能够在长周期维护、业务决策支撑等领域发挥优势&…

【Emgu CV教程】9.2、形态学常用操作之膨胀

文章目录 一、膨胀1.什么叫膨胀2.膨胀的作用3.膨胀的函数 三、演示1.原始素材2.代码3.运行结果 一、膨胀 1.什么叫膨胀 前面讲的是腐蚀&#xff0c;与其相反的操作&#xff0c;就是膨胀。二值化图片以黑色为背景&#xff0c;白色为前景物体。膨胀就是扩张前景物体的边缘。其原…

Vue:纯前端实现文件拖拽上传

先看一下拖拽相关的事件&#xff1a;dragover、dragenter drop和dragleave 。 dragover事件&#xff1a;当被拖动的元素在一个可放置目标上方时&#xff0c;该事件会被触发。 通常&#xff0c;我们会使用event.preventDefault()方法来取消浏览器默认的拖放行为&#xff0c;以便…

Day36:安全开发-JavaEE应用第三方组件Log4j日志FastJson序列化JNDI注入

目录 Java-项目管理-工具配置 Java-三方组件-Log4J&JNDI Java-三方组件-FastJson&反射 思维导图 Java知识点&#xff1a; 功能&#xff1a;数据库操作&#xff0c;文件操作&#xff0c;序列化数据&#xff0c;身份验证&#xff0c;框架开发&#xff0c;第三方库使用…

Android14音频进阶:剖析关键结构体:audio_track_cblk_t(六十一)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…

【三、接口协议与抓包】使用ApiPost进行接口测试

你好&#xff0c;我是山茶&#xff0c;一个探索AI 测试的程序员。 接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相…

个人职业规划的制定方法

在竞争激烈的职场环境中&#xff0c;一个明确的职业规划对于个人发展至关重要。本文将探讨我的个人职场规划&#xff0c;包括短期和长期目标&#xff0c;以及实现这些目标所需的策略和行动。 一、自我评估 1.1 职业兴趣&#xff1a;我对市场营销和数据分析领域充满热情&#xf…

备考银行科技岗刷题笔记(持续更新版)

银行考试计算机部分复习 备考的朋友可以加我QQ大家一起交流一下&#xff0c;互相分享备考的笔记和信息。q&#xff0b;1725961691 IEEE 802.11的帧格式 1.1 IEEE 802.11是什么&#xff1f; 802.11是国际电工电子工程学会&#xff08;IEEE&#xff09;为无线局域网络制定的标…