【InternLM 实战营笔记】基于 InternLM 和 LangChain 搭建MindSpore知识库

InternLM 模型部署

准备环境

拷贝环境

/root/share/install_conda_env_internlm_base.sh InternLM

激活环境

conda activate InternLM

安装依赖

# 升级pip
python -m pip install --upgrade pippip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

mkdir -p /root/data/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b

LangChain 相关环境配置

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7

同时,我们需要使用到开源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型)

首先需要使用 huggingface 官方提供的 huggingface-cli 命令行工具。安装依赖:

pip install -U huggingface_hub

然后在和 /root/data 目录下新建python文件 download_hf.py,填入以下代码: resume-download:断点续下 local-dir:本地存储路径。(linux环境下需要填写绝对路径)

import os# 下载模型
os.system('huggingface-cli download --resume-download --local-dir-use-symlinks False sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

如果下载速度慢可以使用镜像下载将 download_hf.py 中的代码修改为以下代码:

import os# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型
os.system('huggingface-cli download --resume-download --local-dir-use-symlinks False sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

执行脚本

python download_hf.py

下载 NLTK 相关资源

下载

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

知识库搭建

数据收集

选择mindspre docs代码仓作为语料库来源 地址: https://gitee.com/mindspore/docs

# 进入到数据库盘
cd /root/data
# clone 上述开源仓库
git clone https://gitee.com/mindspore/docs.git

知识库搭建的脚本

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os# 获取文件路径函数
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith("_CN.md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith("_CN.txt"):file_list.append(os.path.join(filepath, filename))return file_list# 加载文件函数
def get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs# 目标文件夹
tar_dir = ["/root/data/docs"
]# 加载目标文件
docs = []
for dir_path in tar_dir:docs.extend(get_text(dir_path))# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

可以在 /root/data 下新建一个 demo目录,将该脚本和后续脚本均放在该目录下运行。运行上述脚本,即可在本地构建已持久化的向量数据库,后续直接导入该数据库即可,无需重复构建。

InternLM 接入 LangChain

脚本

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torchclass InternLM_LLM(LLM):# 基于本地 InternLM 自定义 LLM 类tokenizer : AutoTokenizer = Nonemodel: AutoModelForCausalLM = Nonedef __init__(self, model_path :str):# model_path: InternLM 模型路径# 从本地初始化模型super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()self.model = self.model.eval()print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any):# 重写调用函数system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""messages = [(system_prompt, '')]response, history = self.model.chat(self.tokenizer, prompt , history=messages)return response@propertydef _llm_type(self) -> str:return "InternLM"

将上述代码封装为 LLM.py,后续将直接从该文件中引入自定义的 LLM 类。

构建检索问答链

整体脚本

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'# 加载数据库
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings
)from LLM import InternLM_LLM
llm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")
llm.predict("你是谁")from langchain.prompts import PromptTemplate# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答用户的问题。如果你不知道答案,就说你不知道。总是使用中文回答。
问题: {question}
可参考的上下文:
···
{context}
···
如果给定的上下文无法让你做出回答,请回答你不知道。
有用的回答:"""# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)from langchain.chains import RetrievalQAqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})# 检索问答链回答效果
question = "什么是MindSpore"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

部署 Web Demo

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQAdef load_chain():# 加载问答链# 定义 Embeddingsembeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径persist_directory = 'data_base/vector_db/chroma'# 加载数据库vectordb = Chroma(persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上embedding_function=embeddings)# 加载自定义 LLMllm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")# 定义一个 Prompt Templatetemplate = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。{context}问题: {question}有用的回答:"""QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)# 运行 chainqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})return qa_chainclass Model_center():"""存储检索问答链的对象 """def __init__(self):# 构造函数,加载检索问答链self.chain = load_chain()def qa_chain_self_answer(self, question: str, chat_history: list = []):"""调用问答链进行回答"""if question == None or len(question) < 1:return "", chat_historytry:chat_history.append((question, self.chain({"query": question})["result"]))# 将问答结果直接附加到问答历史中,Gradio 会将其展示出来return "", chat_historyexcept Exception as e:return e, chat_historyimport gradio as gr# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:with gr.Row(equal_height=True):   with gr.Column(scale=15):# 展示的页面标题gr.Markdown("""<h1><center>InternLM</center></h1><center>书生浦语</center>""")with gr.Row():with gr.Column(scale=4):# 创建一个聊天机器人对象chatbot = gr.Chatbot(height=450, show_copy_button=True)# 创建一个文本框组件,用于输入 prompt。msg = gr.Textbox(label="Prompt/问题")with gr.Row():# 创建提交按钮。db_wo_his_btn = gr.Button("Chat")with gr.Row():# 创建一个清除按钮,用于清除聊天机器人组件的内容。clear = gr.ClearButton(components=[chatbot], value="Clear console")# 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[msg, chatbot], outputs=[msg, chatbot])gr.Markdown("""提醒:<br>1. 初始化数据库时间可能较长,请耐心等待。2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>""")
gr.close_all()
# 直接启动
demo.launch()

通过将上述代码封装为 run_gradio.py 脚本,直接通过 python 命令运行,即可在本地启动知识库助手的 Web Demo,默认会在 7860 端口运行,接下来将服务器端口映射到本地端口即可访问:

运行效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/277025.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构之单链表

目录 1.问题引入 2.主题介绍 2.1链表的概念和结构 2.2链表的分类 2.3单链表的实现 2.3.1接口实现 2.3.2函数实现 2.3.3函数测试 3.小结 halo&#xff0c;又和大家见面了&#xff0c;今天要给大家分享的是单链表的知识&#xff0c;跟着我的脚步&#xff0c;包学包会哦~ …

中电金信:技术实践|Flink维度表关联方案解析

导语&#xff1a;Flink是一个对有界和无界数据流进行状态计算的分布式处理引擎和框架&#xff0c;主要用来处理流式数据。它既可以处理有界的批量数据集&#xff0c;也可以处理无界的实时流数据&#xff0c;为批处理和流处理提供了统一编程模型。 维度表可以看作是用户来分析数…

人工智能|机器学习——K-means系列聚类算法k-means/ k-modes/ k-prototypes/ ......(划分聚类)

1.k-means聚类 1.1.算法简介 K-Means算法又称K均值算法&#xff0c;属于聚类&#xff08;clustering&#xff09;算法的一种&#xff0c;是应用最广泛的聚类算法之一。所谓聚类&#xff0c;即根据相似性原则&#xff0c;将具有较高相似度的数据对象划分至同一类簇&#xff0c;…

精读《精通 console.log》

1 引言 本周精读的文章是 Mastering JS console.log like a Pro&#xff0c;一起来更全面的认识 console 吧&#xff01; 2 概述 & 精读 console 的功能主要在于控制台打印&#xff0c;它可以打印任何字符、对象、甚至 DOM 元素和系统信息&#xff0c;下面一一介绍。 c…

PSCA电源控制集成之电压和电源域边界

电压域之间的跨越必须是异步的。电源域之间的跨越可以是同步的&#xff0c;也可以是异步的。 在电压域或异步电源域之间的边界处&#xff0c;需要使用域桥来实现所需的协议。 对于电压域之间的边界&#xff0c;或者是异步电源域之间的边界&#xff0c;域桥被分割成两半&#…

基于springboot的七彩云南文化旅游网站的设计与实现(论文+源码)_kaic

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装七彩云南文化旅游网站软件来发挥其高效地信息处理的作用&am…

Linux系列

安装系列 1.MySQL安装 我们要通过rpm&#xff0c;进行MySQL数据库的安装&#xff0c;主要的步骤如下&#xff1a; rpm -qa 查询当前系统中安装的所有软件 rpm -qa | grep mysql 查询当前系统中安装的名称带mysql的软件 rpm -…

七月论文审稿GPT第3.2版和第3.5版:通过paper-review数据集分别微调Mistral、gemma

前言 我司第二项目组一直在迭代论文审稿GPT(对应的第二项目组成员除我之外&#xff0c;包括&#xff1a;阿荀、阿李、鸿飞、文弱等人)&#xff0c;比如 七月论文审稿GPT第1版&#xff1a;通过3万多篇paper和10多万的review数据微调RWKV七月论文审稿GPT第2版&#xff1a;用一万…

Android Kotlin知识汇总(三)Kotlin 协程

Kotlin的重要优势及特点之——结构化并发 Kotlin 协程让异步代码像阻塞代码一样易于使用。协程可大幅简化后台任务管理&#xff0c;例如网络调用、本地数据访问等任务的管理。本主题介绍如何使用 Kotlin 协程解决以下问题&#xff0c;从而让您能够编写出更清晰、更简洁的应用代…

【蓝桥杯选拔赛真题67】python奇偶数位相乘 第十五届青少年组蓝桥杯python选拔赛真题 算法思维真题解析

目录 python奇偶数位相乘 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python奇偶数位相乘 第十五届蓝桥杯青少年组python比赛选拔赛真题 一…

Qt教程 — 3.4 深入了解Qt 控件:Input Widgets部件(3)

目录 1 Input Widgets简介 2 如何使用Input Widgets部件 2.1 Dial 组件-模拟车速表 2.2 QScrollBar组件-创建水平和垂直滚动条 2.3 QSlider组件-创建水平和垂直滑动条 2.4 QKeySequenceEdit组件-捕获键盘快捷键 Input Widgets部件部件较多&#xff0c;将分为三篇文章介绍…

前端和后端权限控制【笔记】

前端权限设置【笔记】 前言版权推荐前端权限设置需求效果实现资源 后端权限控制1.给所有前端请求都携带token2.添加拦截器3.配置到WebMvcConfiguration4.更多的权限验证 最后 前言 2024-3-15 18:27:26 以下内容源自《【笔记】》 仅供学习交流使用 版权 禁止其他平台发布时删…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:NavDestination)

作为子页面的根容器&#xff0c;用于显示Navigation的内容区。 说明&#xff1a; 该组件从API Version 9开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 该组件从API Version 11开始默认支持安全区避让特性(默认值为&#xff1a;expandSaf…

ubuntu安装docker的详细教程

检查卸载老版本docker ubuntu下自带了docker的库,不需要添加新的源。 但是ubuntu自带的docker版本太低,需要先卸载旧的再安装新的。 注:docker的旧版本不一定被称为docker,docker.io 或 docker-engine也有可能,所以卸载的命令为: sudo apt-get remove -y docker docke…

部署prometheus+Grafana可视化仪表盘监控服务

一、部署prometheus及监控仪表盘 简介 Prometheus是开源监控报警系统和时序列数据库(TSDB)。 Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态&#xff0c;任意组件只要提供对应的HTTP接口就可以接入监控&#xff0c;输出被监控组件信息的HTTP接口被叫做expo…

论文阅读——VSA

VSA: Learning Varied-Size Window Attention in Vision Transformers 方法&#xff1a; 给定输入特征X&#xff0c;VSA首先按照基线方法的例程&#xff0c;将这些标记划分为几个窗口Xw&#xff0c;窗口大小为预定义的w。我们将这些窗口称为默认窗口&#xff0c;并从默认窗口中…

easyExcel 导入、导出Excel 封装公共的方法

文档包含三部分功能 1、easyExcel 公共导出list<对象>方法&#xff0c;可以自定义excel中第一行和样式 2、easyExcel 导入逻辑&#xff0c;结合spring Validator 验证导入数据是否符合规范 3、easyExcel 自定义导出 list<map> 、 list<对象> &#xff08;可…

音视频如何快速转二维码?在线生成音视频活码的教程

音频文件的二维码制作步骤是什么样的呢&#xff1f;扫描二维码来展现内容是很流行的一种方式&#xff0c;基本上日常生活中经常会用的图片、音频、视频等都可以使用生成二维码的方式。现在很多的幼儿园或者学校会录制孩子的音频或者视频内容用来展示&#xff0c;那么二维码制作…

吴恩达深度学习笔记:神经网络的编程基础2.5-2.8

目录 第一门课&#xff1a;神经网络和深度学习 (Neural Networks and Deep Learning)第二周&#xff1a;神经网络的编程基础 (Basics of Neural Network programming)2.5 导数&#xff08;Derivatives&#xff09;2.6 更多的导数例子&#xff08;More Derivative Examples&…

一周学会Django5 Python Web开发-Jinja3模版引擎-安装与配置

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计35条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…