三、传输层拥塞控制、差错控制

3.1 概述和传输层服务

传输服务和协议:
为运行在不同主机上的应用进程提供逻辑通信;
传输协议运行在端系统-发送方:将应用层的报文分成报文段,然后传递给网络层;接收方:将报文段重组成报文,然后传递给应用层;
有多个传输层协议可供应用选择;

网络层服务:主机之间的逻辑通信
传输层服务:进程间的逻辑通信——依赖于网络层的服务:延时、带宽。并对网络层的服务进行增强
在这里插入图片描述
可靠的、保序的传输:TCP
-多路复用、解复用
-拥塞控制
-流量控制
-建立连接

不可靠的、不保序的传输:UDP
-多路复用、解复用
-没有为尽力而为的IP服务添加更多的其他额外服务

都不提供的服务:延时保证,带宽保证

3.2 多路复用和解复用

在发送方主机多路复用:从多个套接字接受来自多个进程的报文,根据套接字对应的IP地址和端口号等信息对报文段用头部加以封装(该头部信息用于以后的解复用)
在接收方主机多路解复用:根据报文段的头部信息中的IP地址和端口号将接收到的报文段发给正确的套接字(和对应的应用进程)
在这里插入图片描述
多路解复用工作原理:
解复用作用:TCP或者UDP实体采用哪些信息,将报文段的数据部分交给正确的socket,从而交给正确的进程。
主机收到IP数据报:每个数据报有源IP地址和目标地址;每个数据报承载一个传输层报文段;每个报文段有一个源端口号和目标端口号
主机联合使用IP地址和端口号将报文段发送给合适的套接字

在这里插入图片描述
在这里插入图片描述

3.3 无连接传输UDP

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4 可靠数据传输(RDT)的原理

RDT在应用层传输层和数据链路层都很重要;是网络Top10问题质疑
信道的不可靠特点决定了可靠数据传输协议rdt的复杂性
在这里插入图片描述

在这里插入图片描述
渐增式地开发可靠数据传输协议(RDT)的发送方和接收方
只考虑单向数据传输,但控制信息是双向流动的!
双向的数据传输问题实际上是两个单向数据传输问题的总和
使用有限状态机(FSM)来描述发送方和接受方
状态:在该状态下,下一个状态只由下一个事件唯一确定
在这里插入图片描述
Rdt1.0:在可靠信道上的可靠数据传输
下层的信道是完全可靠的:没有比特出错;没有分组丢失
发送方和接收方的FSM:发送方将数据发送到下层信道;接收方从下层信道接收数据
在这里插入图片描述

Rdt2.0:具有比特差错的信道
下层信道可能会出错:将分组中的比特翻转——用校验和来检测比特差错
问题:怎样从差错中恢复?
-确认(ACK):接收方显式地告诉发送方分组已被正确接受
-否定确认(NAK):接收方显式地告诉发送方分组发生了差错,发送发重传分组
rdt2.0中的新机制:采用差错控制编码进行差错检测

  • 发送方差错控制编码、缓存
  • 接收方使用编码检错
  • 接收方的反馈:控制报文(ACK、NAK):接收方-》发送方
  • 发送方收到反馈相应的动作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
rdt2.2:无NAK的协议
功能同rdt2.1,但只使用ACK(ack要编号)
接收方对最后正确接收的分布发ACK,以替代NAK。接收方必须显式地包含被正确接收分组的序号
当受到重复的ACK时,发送方与收到NAK采取相同的动作,重传当前分组
为后面的一次发送多个数据单位做一个准备:一次能够发送多个,每一个的应答都有:ACK,NACK;使用对前一个数据单位的ACK,代替本数据单位的NAK,确认信息减少一半,协议处理简单
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
rdt3.0:具有比特差错和分组丢失的信道
新的假设:下层信道可能会丢失分组(数据或者ACK)
—会死锁;机制还不够处理这种状况
方法:发送方等待ACK一段合理的时间
发送端超时重传,如果到时没有收到ACK,则重传。
问题:如果分组(或ACK)只是被延迟了:重传会导致数据重复,但利用序列号已经可以处理这个问题。接收方必须指明被正确接收的序列号
需要一个倒计数定时器
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
流水线协议:
流水线:允许发送方在未得到对方确认的情况下一次发送多个分组;
必须增加序号的范围:用多个bit表示分组的序号
在发送方/接收方要有缓冲区:发送方缓冲:未得到确认,可能需要重传。接收方缓存:上层用户取用数据的速率!=接收到的数据速率,接收到的数据可能乱序,排序支付
两种通用的流水线协议:回退N步(GBN)和选择重传(SR)

滑动窗口协议:
发送缓冲区:
-形式:内存中的一个区域,落入缓冲区的分组可以发送
-功能:用于存放已发送,但是没有收到确认的分组
-必要性:需要重发时可用
发送缓冲区的大小:一次最多可以发送多个未经确认的分组
-停止等待协议=1
-流水线协议>1,合理的值,不能很大,链路利用率不能超过100%
发送缓冲区中的分组:
-未发送的:落入发送缓冲区的分组,可以连续发送出去
-已经发送出去的、等待对方确认的分组:发送缓冲区的分组只有得到确认才能删除
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
接收窗口=1:GBN协议,只能顺序接受(累计确认)
接收窗口》1:SR协议,可以乱序接受
在这里插入图片描述
在这里插入图片描述
异常情况下的GBN的2窗口互动
发送窗口:
新分组落入发送缓冲区的范围,发送-》前沿移动
超时重发机制让发送端将发送窗口中的所有分组发送出去
来了老分组的重复确认-》后沿不向前滑动-》新的分组无法落入发送缓冲区范围(此时如果发送缓冲区有新的分组可以发送)
接收窗口:
收到乱序分组,没有落入到接收窗口范围,抛弃
(重复)发送老分组的确认,累计确认

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
选择重传SR:
接收方对每个正确接收的分组,分别发送ACK(非累计确认),因为接受窗口》1,因此可以缓存乱序的分组,最终将分组按顺序交付给上层
发送方只对那些没有收到ACK的分组进行重传0选择性重发,发送方为每个未确认的分组设定一个定时器。
发送窗口的最大值(发送缓冲区)限制发送未确认分组的个数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.5 面向连接的传输TCP

点对点:一个发送方,一个接收方
可靠的、按顺序的字节流:没有报文边界
管道化(流水线):TCP拥塞控制和流量控制设置窗口大小
发送和接受缓存
全双工数据:在同一连接中数据流双向流动
面向连接:在数据交换前,通过握手初始化发送方、接收方的状态变量
有流量控制:发送方不会淹没接收方
在这里插入图片描述
MSS:最大报文段
在这里插入图片描述
TCP序号:报文段首字节的在字节流的编号
确认号:期望从另一方收到的下一个字节的序号;累计确认
在这里插入图片描述
在这里插入图片描述
TCP往返延时(RTT)和超时:
怎样设置TCP超时?——比RTT长、太早超时、太长报文段丢失
怎样估计RTT?——测量从报文段发出到收到确认的实践,因为存在变化,所以对多个测量值求平均
在这里插入图片描述
在这里插入图片描述
可靠数据传输:TCP在IP不可靠的服务的基础上建立了rdt,
管道化的报文段——GBN/SR
累计确认——GBN
单个重传定时器——GBN
是否可以接受乱序的,没有规范
通过以下事件触发重传:超时——SR;重复的确认
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
TCP连接管理:
在正式交换数据之前,发送方和接收方握手建立通信关系:同意建立连接,同一连接参数
Q:在网络中,两次握手建立连接总是可行的吗?

  • 变化的延迟,没有丢,但可能超时
  • 由于丢失造成的重传
  • 报文乱序
  • 相互看不到对方

虚假的数据,旧数据当作新数据接受了

在这里插入图片描述
在这里插入图片描述
TCP:关闭连接
客户端,服务器分别关闭他自己这一侧的连接
一旦收到FIN,用ACK回应
可以处理同时的FIN交换

3.6 拥塞控制原理

拥塞得表现:
1.分组丢失(路由器缓冲区溢出)
2.分组经历比较长的延迟(在路由器的队列中排队)
在这里插入图片描述
两个主机经过一个路由器分别发送给两个主机,路由器带宽有限。
在这里插入图片描述

  1. 延迟大
  2. 为了保证输出,输入在持续增加
  3. 网络拥塞,重传没有必要的数据,加速拥塞

在这里插入图片描述

拥塞控制方法:
1.端到端拥塞控制:
没有来自网络的明显反馈;端系统根据延迟和丢失时间推断是否有拥塞;TCP采用的方法。
2.网络辅助的拥塞控制:路由器提供给端系统以反馈信息,单个bit置位,显示有拥塞。显式提供发送端可以采用的速率。
在这里插入图片描述
在这里插入图片描述

3.7 TCP拥塞控制

端到端拥塞控制
路由器不向主机提供有关拥塞的反馈信息,是的路由器负担较轻,符合网络核心简单的TCPIP架构原则,
端系统根据自身得到的信息,判断是否发生拥塞,从而采取行动。
拥塞控制的几个问题:
如何检测拥塞:轻微拥塞,拥塞;
控制拥塞:在拥塞发生时如何动作,降低速率;在拥塞缓解时如何动作,增加速率。

拥塞感知:
发送端如何探测到拥塞?
1.某个段超时了:拥塞
超时时间到,某个段的确认没有来,网络拥塞,某个路由缓冲区没空间了。被丢弃,概率大。出错被丢弃了,没有通过某个校验,被丢弃,概率小。一旦超时,就认为拥塞了,有一定误判,但总体控制方向是对的。
2.有关某个段的三次重复ACK:轻微拥塞
段的第一个ack,正常,确认绿段,期待红段。段的第二个重复ack,意味着红段之后的段收到了,乱序到达,一直重复ack,意味后面的段都乱序到达了,说明红段丢失的可能性极大。网络这时还能够进行一定程度的传输,拥塞但情况比第一种好

速率控制方法:
维持一个拥塞窗口的值:CongWin
发送端限制已发送但是未确认的数据量的上限,从而粗略地控制发送方往网络中注入的速率
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/277876.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

泽众云真机-机型支持ADB调试功能即将上线

最近云真机平台在线客服,收到很多咨询关于ADB调试功能,什么时候能更新?据小编所知,正在升级之中,有一块专门为了解决ADB调试功能提前准备,升级网络硬件设备,目前平台的功能已开发完成&#xff0…

2024/3/15 记录简版抖音部署遇到的问题

1、Centos连不上网 参考这一篇:虚拟机 CentOS 有线连接图标直接消失,网络连接不上,网络连接失败的解决方案(亲测有效)_centos网络图标不见了-CSDN博客 2、SQLyog连接不到docker中的mysql 原因是对密码有加密过程 &a…

asp.net 作业星软件系统

asp.net 作业星软件系统 用户功能:分教师和家长(学生) 注册登录:登录部分是用户名密码,以及教师和家长(学生)的勾选; 注册包括用户名密码确认密码再次确认密码(与上方输入的密码比对)身份班级设置找回账号的问题和答案…

第三篇 - 概述- IAB受众和技术标准 - IAB视频广告标准《数字视频和有线电视广告格式指南》

第三篇 - 概述- IAB受众和技术标准​​​​​​​ - 我为什么要翻译介绍美国人工智能科技公司IAB技术标准系列(2) 本文目录 一、IAB技术实验室简介 二、概述及IAB受众 三、资源- IAB倡导的相关视频广告技术标准 四、案例分享-介绍一家数字化营销服务…

如果网络不好 如何下载huggingface上的模型

很多朋友网络不太好,有时候上不了huggingface这样的国外网站; 或者网络流量不太够,想要下载一些stable diffusion模型,或者其他人工智能的大模型的时候,看到动辄几个G的模型文件,不太舍得下载;…

【JavaSE】类与对象

前言 Java是一门纯面向对象的语言,在面向对象的世界里,一切都为对象。它是解决问题的一种思想,主要依靠对象之间的交互完成一件事情。类与对象是我们学习面向对象最基础的知识,是面向对象实现的基石,可见它是有多么重…

Linux环境开发工具之yum

前言 前面我们已经对基本的指令和权限进行了介绍,本期开始我们将介绍常用的开发工具。例如:软件包管理器yum。 本期内容介绍 Linux上安装软件的方式 什么是yum yum的相关操作 yum的本地配置和yum源 一、Linux上安装软件的方式 在介绍Linux上如何安装一…

Stable Diffusion 安装教程

一、安装准备 1.电脑需要安装python环境 2.下载SD的安装包 二、安装python 1.python安装,python包下载地址:Download Python | Python.org 2.运行exe下载包 3.然后下一步,选择目录后再下一步 安装完成 4.打开终端 输入python,…

MongoDB从0到1:高效数据使用方法

MongoDB,作为一种流行的NoSQL数据库。从基础的文档存储到复杂的聚合查询,从索引优化到数据安全都有其独特之处。文末附MongoDB常用命令大全。 目录 1. 引言 MongoDB简介 MongoDB的优势和应用场景 2. 基础篇 安装和配置MongoDB MongoDB基本概念 使…

打破数据孤岛,TDengine 与 Tapdata 实现兼容性互认证

当前,传统行业正面临着数字化升级的紧迫需求,但海量时序数据的处理以及数据孤岛问题却日益突出。越来越多的传统企业选择引入时序数据库(Time Series Database,TSDB)升级数据架构,同时,为了克服…

vue3 el-form中嵌套el-tabale 对输入动态校验

简单案例 <el-form :model"Form" :rules"rules" ref"FormRef" class"formDiv"><el-table :data"Form.copyWriters" style"width: 100%"><el-table-column label"文案链接"><temp…

ISIS默认层级实验简述

ISIS被划分为三个层级&#xff1a;Level 1、Level 2和Level 1-2。 默认情况下&#xff0c;ISIS路由器属于level 1-2,是指同时支持Level 1和Level 2的路由器。路由器既可以在同一个自治系统内部进行路由选择&#xff0c;也可以将路由信息传递到其他自治系统。 实验拓扑图&#…

DDos攻击如何被高防服务器有效防范?

德迅云安全-领先云安全服务与解决方案提供商 什么是DDos攻击&#xff1f; DDos攻击是一种网络攻击手段&#xff0c;旨在通过使目标系统的服务不可用或中断&#xff0c;导致无法正常使用网络服务。DDos攻击可以采取多种方式实施&#xff0c;包括洪水攻击、压力测试、UDP Flood…

【C语言】字符函数与字符串函数以及内存函数 { 超详细攻略,一篇学会 }

今日分享&#xff1a;字符、字符串函数和内存函数 内存函数就是对内存进行操作的函数 字符串函数就是对字符串进行操作的函数 字符函数就是对字符进行操作的函数 str前缀的函数是字符串函数&#xff0c;头文件string.h mem前缀的函数是内存函数&#xff0c;头文件stdlib.h 字符…

verilog 从入门到看得懂---verilog 的基本语法数据和运算

笔者之前主要是使用c语言和matab 进行编程&#xff0c;从2024年年初开始接触verilog&#xff0c;通过了一周的学习&#xff0c;基本上对verilog 的语法有了基本认知。总统来说&#xff0c;verilog 的语法还是很简单的&#xff0c;主要难点是verilog是并行运行&#xff0c;并且强…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:TabContent)

仅在Tabs中使用&#xff0c;对应一个切换页签的内容视图。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 支持单个子组件。 说明&#xff1a; 可内置系统组件和自定义组件&#xff0c;支…

浏览器同源策略及跨域问题

同源策略&#xff1a;同源策略是一个重要的安全策略&#xff0c;它用于限制一个源的文档或者它加载的脚本如何能与另一个源的资源进行交互。它能帮助阻隔恶意文档&#xff0c;减少可能被攻击的媒介。 同源策略的作用&#xff1a;保护浏览器中网站的安全&#xff0c;限制ajax只…

0基础 三个月掌握C语言(11)

字符函数和字符串函数 为了方便操作字符和字符串 C语言标准库中提供了一系列库函数 接下来我们学习一下这些函数 字符分类函数 C语言提供了一系列用于字符分类的函数&#xff0c;这些函数定义在ctype.h头文件中。这些函数通常用于检查字符是否属于特定的类别&#xff0c;例如…

【教学类-34-10】20240313 春天拼图(Midjounery生成线描图,4*4格拼图块)(AI对话大师)

作品展示&#xff1a; 背景需求&#xff1a; 利用华文彩云空心字&#xff08;粗胖字体。凑满9个拼图&#xff09;制作了3*3的拼图块 【教学类-34-09】20240310华文彩云学号拼图&#xff08;3*3格子浅灰底图 深灰拼图块&#xff09;&#xff08;AI对话大师&#xff09;-CSDN博…

Gitlab光速发起Merge Request

前言 在我们日常开发过程中需要经常使用到Merge Request&#xff0c;在使用过程中我们需要来回在开发工具和UI界面之前来回切换&#xff0c;十分麻烦。那有没有一种办法可以时间直接开发开工具中直接发起Merge Request呢&#xff1f; 答案是有的。 使用 Git 命令方式创建 Me…