Python实现BOA蝴蝶优化算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算法。该算法受到了蝴蝶觅食和交配行为的启发,蝴蝶接收/感知并分析空气中的气味,以确定食物来源/交配伙伴的潜在方向。

蝴蝶利用它们的嗅觉、视觉、味觉、触觉和听觉来寻找食物和伴侣,这些感觉也有助于它们从一个地方迁徙到另一个地方,逃离捕食者并在合适的地方产卵。在所有感觉中,嗅觉是最重要的,它帮助蝴蝶寻找食物(通常是花蜜)。蝴蝶的嗅觉感受器分散在蝴蝶的身体部位,如触角、腿、触须等。这些感受器实际上是蝴蝶体表的神经细胞,被称为化学感受器。它引导蝴蝶寻找最佳的交配对象,以延续强大的遗传基因。雄性蝴蝶能够通过信息素识别雌性蝴蝶,信息素是雌性蝴蝶发出的气味分泌物,会引起特定的反应。

  通过观察,发现蝴蝶对这些来源的位置有非常准确的判断。此外,它们可以辨识出不同的香味,并感知它们的强度。蝴蝶会产生与其适应度相关的某种强度的香味,即当蝴蝶从一个位置移动到另一个位置时,它的适应度会相应地变化。当蝴蝶感觉到另一只蝴蝶在这个区域散发出更多的香味时,就会去靠近,这个阶段被称为全局搜索。另外一种情况,当蝴蝶不能感知大于它自己的香味时,它会随机移动,这个阶段称为局部搜索。

本项目通过BOA蝴蝶优化算法优化循环神经网络分类模型。  

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建BOA蝴蝶优化算法优化LSTM分类模型

主要使用BOA蝴蝶优化算法优化LSTM算法,用于目标分类。

6.1 BOA蝴蝶优化算法寻找最优参数值

最优参数:

6.2 最优参数值构建模型 

编号

模型名称

参数

1

LSTM分类模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失和准确率曲线图

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

LSTM分类模型

准确率

0.9150

查准率

0.9247

查全率

0.8958

F1分值

0.9101

从上表可以看出,F1分值为0.9101,说明模型效果良好。

关键代码如下:

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.92;分类为1的F1分值为0.91。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有14个样本;实际为1预测不为1的 有20个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了BOA蝴蝶优化算法寻找LSTM算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1Z1OBCEIdcQ4yTHMoBtCXIw 
提取码:0v03

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278262.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element el-cascader获取完整数据

<el-table-column prop"createTime" label"编辑店铺分类"><template slot-scope"scope"><el-cascaderref"cascader"v-model"scope.row.shoptypeone":options"commoditylist"placeholder"请选…

RPC 和 序列化

RPC 1 RPC调用流程 1.1 clerk客户端调用远程服务 Clerk::PutAppend() raftServerRpcUtil::PutAppend() raftServerRpcUtil是client与kvserver通信的入口&#xff0c; 包含kvserver功能的一对一映射&#xff1a;Get/PutAppend&#xff0c;通过stub对象——raftKVRpcProctoc:…

爬虫神器!使用Python一键下载网页图片,省时高效!

引言 爬虫技术在当今信息时代中扮演着重要的角色&#xff0c;可以自动化获取互联网上的数据。本教程将围绕你提供的Python爬虫代码展开&#xff0c;旨在实现自动下载图片的功能。通过这个示例&#xff0c;你将学习如何利用爬虫技术批量获取网页中的图片&#xff0c;并将其保存…

MC78L05ACDR2G线性稳压器芯片中文资料规格书PDF数据手册引脚图参数图片价格

产品概述&#xff1a; MC78L00A系列线性稳压器价格便宜&#xff0c;易于使用&#xff0c;适用于各种需要最高100mA的调节电源的应用。与大功率MC7800和MC78M00系列一样&#xff0c;这款稳压器也提供内部电流限制和高温关断&#xff0c;因此非常坚固耐用。在很多应用中&#xf…

【C语言】linux内核pci_save_state

一、中文注释 //include\linux\pci.h /* 电源管理相关的例程 */ int pci_save_state(struct pci_dev *dev);//drivers\pci\pci.c /*** pci_save_state - 在挂起前保存PCI设备的配置空间* dev: - 我们正在处理的PCI设备*/ int pci_save_state(struct pci_dev *dev) {int i;/* X…

odoo17开发教程(14):Computed Fields And Onchanges

目录 概述&#xff1a; 计算字段Computed Fields 依赖关系 实践&#xff1a; 计算总面积 计算最佳报价。 Inverse Function反函数 实践&#xff1a;计算报价的有效日期。 其他信息 Onchanges 实践&#xff1a;设置花园面积和方向值。 如何使用它们&#xff1f; 概述…

漫谈5种注册中心

01 注册中心基本概念 1.1 什么是注册中心&#xff1f; 注册中心主要有三种角色&#xff1a; 服务提供者&#xff08;RPC Server&#xff09;&#xff1a;在启动时&#xff0c;向 Registry 注册自身服务&#xff0c;并向 Registry 定期发送心跳汇报存活状态。 服务消费者&…

鸿蒙开发学习:【OpenHarmony HAR】

OpenHarmony js/ts三方库使用的是OpenHarmony静态共享包&#xff0c;即HAR(Harmony Archive)&#xff0c;可以包含js/ts代码、c库、资源和配置文件。通过HAR&#xff0c;可以实现多个模块或者多个工程共享ArkUI组件、资源等相关代码。HAR不同于HAP&#xff0c;不能独立安装运行…

Python数据分析-Matplotlib1

一、折线图的绘制 1.数据分析流程 2.运用Matplot绘制折线图 #encodingutf-8 import random from matplotlib import pyplot as plt #绘图工具库 from matplotlib import font_manager #解决中文显示问题 from cProfile import label #设置字体方式 my_font font_manager.Fon…

jscpd对项目进行查重(支持150+类语言)

jscpd jscpd 查重时能够跳过标记为忽略的块和新行以及空符号和注释&#xff08;不支持尖括号注释<!-- --&#xff01;>&#xff09;&#xff0c;重复率判定依据为一定长度标识符的MD5值是否相同。 安装 npm install -g jscpd配置参数(查看更多) OptionTypeDefaultDes…

挑战杯 机器视觉目标检测 - opencv 深度学习

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…

VS2019加QT5.14中Please assign a Qt installation in ‘Qt Project Settings‘.问题的解决

第一篇&#xff1a; 原文链接&#xff1a;https://blog.csdn.net/aoxuestudy/article/details/124312629 error:There’ no Qt version assigned to project mdi.vcxproj for configuration release/x64.Please assign a Qt installation in “Qt Project Settings”. 一、分…

Docker学习之使用harbor搭建私有仓库(超详解析)

实验目的&#xff1a; 使用centos7&#xff0c;基于harbor构建私有仓库 实验步骤&#xff1a; 下载相关安装包和依赖&#xff1a; [rootlocalhost ~]# yum install -y yum-utils device-mapper-persistent-data lvm2 wget //安装docker所需要的相关依赖 [rootlocalhost ~]#…

[ThinkPHP]Arr返回1

$detailId (int)Arr::get($detail, null); var_dump($detailId); 打印结果&#xff1a;int(1) 原因&#xff1a; vendor/topthink/think-helper/src/helper/Arr.php

如何定期清理数据库中的无效数据?

企业的数据库在运行相当长一段时间后&#xff0c;都会出现无效数据的堆积&#xff0c;这些数据包含了过时、重复、错误、缺失&#xff08;空字段&#xff09;的数据&#xff0c;长期占据着宝贵的数据库空间。而在上云热潮的推动下&#xff0c;绝大多数企业已经将他们的业务数据…

Linux第77步_处理Linux并发的相关函数

了解linux中的“原子整形数据”操作、“原子位数据”操作、自旋锁、读写锁、顺序锁、信号量和互斥体&#xff0c;以及相关函数。 并发就是多个“用户”同时访问同一个共享资源。如&#xff1a;多个线程同时要求读写同一个EEPROM芯片&#xff0c;这个EEPROM就是共享资源&#x…

2024全网最全Excel函数与公式应用

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 引言 Excel是一款广泛应用于商业、教育和个人…

某夕夕商品数据抓取逆向之webpack扣取

逆向网址 aHR0cHM6Ly93d3cucGluZHVvZHVvLmNvbQ 逆向链接 aHR0cHM6Ly93d3cucGluZHVvZHVvLmNvbS9ob21lL2JveXNoaXJ0 逆向接口 aHR0cHM6Ly9hcGl2Mi5waW5kdW9kdW8uY29tL2FwaS9naW5kZXgvdGYvcXVlcnlfdGZfZ29vZHNfaW5mbw 逆向过程 请求方式&#xff1a;GET 参数构成 【anti_content】…

基于SSM SpringBoot vue办公自动化计划管理系统

基于SSM SpringBoot vue办公自动化计划管理系统 系统功能 登录注册 个人中心 员工信息管理 部门信息管理 会议管理 计划管理 行程安排管理 行程进度管理 管理员管理 开发环境和技术 开发语言&#xff1a;Java 使用框架: SSM(Spring SpringMVC Mybaits)或SpringBoot 前端…

【题目】【网络系统管理】2022年甘肃省职业院校技能大赛-网络构建-试卷

极安云科专注职业教育技能竞赛培训4年&#xff0c;包含信息安全管理与评估、网络系统管理、网络搭建等多个赛项及各大CTF模块培训学习服务。本团队基于赛项知识点&#xff0c;提供完整全面的系统性理论教学与技能培训&#xff0c;成立至今持续优化教学资源与讲师结构&#xff0…