NeRF——基于神经辐射场的三维场景重建和理解

概述

三维重建是一种将物理世界中的实体转换为数字模型的计算机技术。其基本概念是通过对物理世界中的物体或场景进行扫描或拍摄,并使用计算机算法将其转换为三维数字模型。抽象意义上的三维模型指的是:形状和外观的组合,并且可以渲染成不同视角下真实感强烈的RGB图像。
三维重建技术可以应用于许多领域,如建筑设计、游戏开发、虚拟现实等。通过三维重建技术,可以快速、准确地获取物体的几何形状、纹理、颜色等信息,从而实现更高质量的渲染和呈现效果。
三维重建技术的实现方式有很多种,如通过多视角立体重建、激光扫描、结构光扫描等方式进行。近年来,随着深度学习等技术的发展,深度神经网络也被应用于三维重建技术中,取得了令人瞩目的成果。三维重建技术的发展和应用将进一步推动数字化建设的发展和普及。这些突破性进展为三维重建技术的持续演进提供了强大动力,进一步推动了数字化建设的普及和发展。

神经辐射场(Neural Radiance Fields,简称NeRF)是一种基于神经网络的三维场景重建方法,它能够从二维图像数据中恢复出逼真的三维场景。NeRF利用神经网络模拟了一个场景中每个点的辐射量和密度,从而实现了高质量的三维重建。

自NeRF首次亮相以来,它在计算机图形学、计算机视觉和增强现实等领域引起了广泛的关注和应用前景。该技术的出现改变了传统的三维重建方法,其生成的模型更加逼真、细节丰富,能够捕捉到真实场景中的光照、阴影等复杂效果。

在人工智能领域,NeRF也成为了研究热点之一。越来越多的研究者将其应用于图像生成、虚拟现实、智能交互等方面,并在各大顶会如ICCV(International Conference on Computer Vision)、CVPR(Conference on Computer Vision and Pattern Recognition)等发表了相关论文。这些论文不断地推动着NeRF技术的发展,并在理论和应用上取得了新的突破。
在这里插入图片描述

传统的三维重建方法存在着一系列缺陷,例如在最终重建的模型中可能出现孔洞、纹理混叠,同时由于体素分辨率的限制,很多细节会丢失。
与传统方法相比,NeRF技术能够实现照片级别的新视角合成,重建的模型细节更加丰富。它通过利用稀疏的输入视图集来优化底层的连续体积场景函数,从而实现了对复杂场景视图的最佳综合结果。NeRF生成的模型不会出现空洞,而且能够还原更多细节,提供更逼真的三维重建效果。
由于该技术吸引了众多研究者的关注,NeRF的发展速度也非常迅速。随着更多人投入研究,并不断改进和优化该技术,它在三维重建、图像合成等领域的应用前景十分广阔。
在这里插入图片描述

NeRF整体框架

NeRF的工作流程可以分为两个主要步骤:

  1. 学习场景的辐射场函数:

    • 首先,通过神经网络学习场景的辐射场函数。这一步的输入是三维空间中的坐标和方向,输出则是对应点的颜色和透明度值。通过训练神经网络,模型能够从输入的坐标和方向信息中学习到场景中每个点的颜色和透明度信息,从而实现对三维信息的编码。
  2. 体渲染:

    • 其次是体渲染,这一步分为以下几个子步骤:
      • 将场景分成小的体素。
      • 对每个体素内的光线进行采样。
      • 通过对所有采样点的辐射场函数进行加权平均,得到最终的像素颜色值。这相当于对体素中的辐射场进行了积分,从而得到了最终的图像。
      • 在计算像素颜色值时,考虑到点的透明度,透明度越高,该点在射线下的颜色反应在像素上的权重越小。

NeRF还使用了一些技巧来提高重建质量和效率,如位置编码技术和分层体素采样技术。位置编码技术用于将输入坐标进行编码,以便模型更好地处理坐标信息;而分层体素采样技术通过对采样进行分层,可以减少渲染时间,提高渲染效率。这些技术的应用进一步改善了NeRF的重建质量和效率,使其成为一种强大而高效的三维重建方法。
在这里插入图片描述

辐射场原理

辐射场是一个五维函数,用来描述辐射在空间中的传播行为和相互作用。在计算机图形学和计算机视觉领域,辐射场常被用于表示三维场景中的光照和颜色信息,可应用于渲染、重建、纹理合成等任务。

辐射场由三个空间维度 ( x , y , z ) (x,y,z) (x,y,z)图片和两个方向维度 ( θ , φ ) (\theta,\varphi) (θ,φ)图片组成,分别表示辐射在空间中的位置和光线的方向。这种表示方法使得辐射场能够描述光线在介质中的传播、反射、折射、散射等现象,同时考虑介质中的吸收、发射等能量转换过程。

神经辐射场可被视为从空间位置和视角方向到颜色图片和透明度图片的映射函数。通过神经网络学习,它能够对三维场景中的光照、颜色和透明度等信息进行建模,从而实现对场景的精确重建和逼真渲染。这种基于神经网络的辐射场表示方法为实现高质量的三维重建和图像合成提供了一种强大的工具。
辐射场用数学公式可以表达为:
F ( x , y , z , θ , φ ) = ( c ( x , y , z , θ , φ ) , σ ( x , y , z , θ , φ ) ) F(x,y,z,\theta,\varphi)=(c(x,y,z,\theta,\varphi),\sigma(x,y,z,\theta,\varphi)) F(x,y,z,θ,φ)=(c(x,y,z,θ,φ),σ(x,y,z,θ,φ))
其中 f θ f_{\theta} fθ是一个神经网络模型, θ \theta θ是模型参数。

神经网络架构如下图所示,这里采用的是全连接的形式,绿色为输入,红色为输出,其中代表输入位置、角度映射出的维向量,这里我们可以看出,透明度和视角无关而颜色和视角有关:
在这里插入图片描述

体渲染

体渲染是一种用于可视化三维数据的方法,其目的是将数据中的体素(Voxel)转换为图像,以便显示其内部结构和特征。在体渲染的过程中,通常涉及到光线传播、颜色合成和光照计算等关键步骤,通过这些步骤可以实现高质量的体渲染效果。

体渲染中最基本的方法是基于光线投影(Ray Casting)的体积光线渲染(Volume Ray Casting)。其核心思想是在三维体素数据上投射光线,并沿着光线路径计算体素的透明度和颜色,从而生成最终的渲染图像。具体而言,这个过程包括以下步骤:

  1. 光线投射: 从相机或视点位置出发,沿着图像平面上的像素位置向场景内部发射光线。

  2. 体素采样: 在每条光线上进行采样,以遍历沿光线路径的体素。

  3. 光线-体素相交计算: 计算光线与体素相交的位置和密度信息。

  4. 颜色合成: 根据相交位置的密度信息,计算体素的颜色,并将其与之前采样的颜色进行合成。

  5. 透明度计算: 根据体素的密度信息,计算光线传播过程中的透明度,以调整最终像素的颜色值。

在这里插入图片描述
光线传播过程中,透明度和颜色的计算通常基于体素的密度和光线与体素交点的位置和方向等信息。在体渲染中,常用的透明度传输函数(Opacity Transfer Function)和颜色传输函数(Color Transfer Function)可以用于调整渲染效果。

在NeRF中,体渲染可以用以下公式来表示:
C ( x ) = ∫ 0 t m a x T ( x + t ω ) c ( x + t ω ) σ ( x + t ω ) d t C(x)=\int_{0}^{t_{m a x}}T(x+t\omega)c(x+t\omega)\sigma(x+t\omega)d t C(x)=0tmaxT(x+tω)c(x+tω)σ(x+tω)dt

其中 c ( x ) c_{(x)} c(x)代表投影点的颜色, T ( x ) T_{(x)} T(x)代表光线从物体到观测点沿途的透明度的累和,图片和图片分别代表神经辐射场输出的三维空间的颜色和透明度,图片表示光线与数据集的最大交点,图片表示光线的方向。

应用

神经辐射场目前广泛用于3D建模、自动驾驶、导航系统等领域。为训练自动驾驶系统,英伟达利用NeRF创建出用于大规模训练的虚拟环境 NVIDIA DRIVE Sim 平台,重建出整个旧金山市区的3D环境;NeRF 技术还可以加速元宇宙的发展,为 VR 和 AR 硬件设备提供独特的三维内容,例如,在 VR 游戏或元宇宙世界中,NeRF 可以用来创建高度精细的 3D 场景,增强沉浸式体验。在 AR 应用中,NeRF 可以用来创建更加逼真的虚拟物体,还原文物等模型。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278497.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

unity3d Animal Controller的Animal组件中Speeds,States和modes基础部分理解

Speeds 速度集是修改你可以做的原始动画,增加或减少运动,旋转,或动画速度。它们与 州 所以,当动物在运动状态下,在飞行或游泳时,你可以有不同的速度 如果你的性格动画是 (已到位), 你一定要调整速度 位置 和 旋转 每一种的价值观 速度装置 …否则,它们不会移动或旋转。 每个速…

使用Docker在windows上安装IBM MQ

第一步、安装wsl 详见我另一篇安装wsl文章。 第二步、安装centos 这里推荐两种方式,一种是从微软商城安装,一种是使用提前准备好的镜像安装,详见我另一篇windos下安装centos教程。 第三步、安装windows下的Docker desktop 详见我另一篇wind…

MATLAB的使用(二)

一,算法需求 算法五特性(1)有穷性。有穷性是指算法需在有穷步骤、有穷时间内结束。 (2)确定性。确定性是指每个步骤都有确切的意义,相同的输入有相同的输出。 (3)有效性。有效性是指可通过已实现的运算在有限次完成,或叫可行性。 (4)输入。…

ttkbootstrap界面美化系列之主窗口(二)

一:创建主窗口 在利用ttkbootstrap构建应用程序时,可以用tkinter传统的tk方法来创建主界面,也可以用ttkbootstrap中的window类来创建,下面我们来看看两者的区别 1,传统方法创建主界面 import tkinter as tk import …

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Span)

作为Text组件的子组件,用于显示行内文本的组件。 说明: 该组件从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 该组件从API Version 10开始支持继承父组件Text的属性,即如果子组件未设置…

2.26OS分类,中断(内,外),系统调用,操作系统结构、引导,虚拟机(两类VMM),进程

外核可以申请分配连续的磁盘块以支持频繁的随机访问,其它的方式是采用虚拟存储 分层结构

代码随想录阅读笔记-哈希表【三数之和】

题目 给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a b c 0 ?请你找出所有满足条件且不重复的三元组。 注意: 答案中不可以包含重复的三元组。 示例: 给定数…

OceanBase原理之内存管理

第1章 前言 1.1 多租户管理简介 OceanBase数据库中,应用了单集群多租户的设计,使得一个集群内能够创建多个彼此独立的租户。在OceanBase数据库,租户成为了资源分配的单位,同时还是数据库对象管理和资源管理的基础。 在某种程度…

力扣思路题:最长特殊序列1

int findLUSlength(char * a, char * b){int alenstrlen(a),blenstrlen(b);if (strcmp(a,b)0)return -1;return alen>blen?alen:blen; }

2024蓝桥杯每日一题(DFS)

备战2024年蓝桥杯 -- 每日一题 Python大学A组 试题一:奶牛选美 试题二:树的重心 试题三:大臣的差旅费 试题四:扫雷 试题一:奶牛选美 【题目描述】 听说最近两斑点的奶牛最受欢迎,…

【力扣精选算法100道】——带你了解(数组模拟栈)算法

目录 💻比较含退格的字符串 🎈了解题意 🎈分析题意 🚩栈 🚩数组模拟栈 🎈实现代码 844. 比较含退格的字符串 - 力扣(LeetCode) 💻比较含退格的字符串 &#x1f3…

从历年315曝光案例,看APP隐私合规安全

更多网络安全干货内容:点此获取 ——————— 随着移动互联网新兴技术的发展与普及,移动APP的应用渗透到人们的衣食住行方方面面,衍生出各类消费场景的同时,也带来了无数的个人隐私数据泄露、网络诈骗事件。 历年来&#xff…

PyTorch学习笔记之激活函数篇(二)

文章目录 2、Tanh函数2.1 公式2.2 对应的图像2.3 对应生成图像代码2.4 优点与不足2.5 torch.tanh()函数 2、Tanh函数 2.1 公式 Tanh函数的公式: f ( x ) e x − e − x e x e − x f(x)\frac{e^x-e^{-x}}{e^xe^{-x}} f(x)exe−xex−e−x​ Tanh函数的导函数&am…

【python】学习笔记04-函数

4.1 函数介绍 1. 函数是: 组织好的、可重复使用的、用来实现特定功能的代码段 2. 使用函数的好处是: • 将功能封装在函数内,可供随时随地重复利用 • 提高代码的复用性,减少重复代码,提高开发效率 4.2 函数的定义 …

数据库系统概念(第二周 第二堂)(关系模型)

目录 回顾 关系模型 历史与现状 组成成分 数据结构——关系 关系定义 关系性质 关系和关系模式 难点概念理解 关系属性的分类 一、超码(superkey) 二、候选码(candidate key) 三、主码(primary key&#…

智慧公厕对于智慧城市管理的意义

近年来,智慧城市的概念不断被提及,而智慧公厕作为智慧城市管理的重要组成部分,其在监测、管理和养护方面发挥着重要的作用。智慧公厕不仅是城市市容提升的重要保障,还能提升城市环境卫生管理的质量,并有效助力创造清洁…

【Paper Reading】6.RLHF-V 提出用RLHF的1.4k的数据微调显著降低MLLM的虚幻问题

分类 内容 论文题目 RLHF-V: Towards Trustworthy MLLMs via Behavior Alignment from Fine-grained Correctional Human Feedback 作者 作者团队:由来自清华大学和新加坡国立大学的研究者组成,包括Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Y…

计算机二级(Python)真题讲解每日一题:《十字叉》

描述‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬ ‪‬‪‬‪‬‪‬‪‬‮‬‪…

centos创建并运行一个redis容器 并支持数据持久化

步骤 : 创建redis容器命令 docker run --name mr -p 6379:6379 -d redis redis-server --appendonly yes 进入容器 : docker exec -it mr bash 链接redis : redis-cli 查看数据 : keys * 存入一个数据 : set num 666 获取数据 : get num 退出客户端 : exit 再退…

phpcms头像上传漏洞引发的故事

目录 关键代码 第一次防御 第一次绕过 第二次防御 第二次绕过 第三次防御 第三次绕过 如何构造一个出错的压缩包 第四次防御 第四次绕过 本篇文章是参考某位大佬与开发人员对于文件包含漏洞的较量记录下的故事,因为要学习文件包含漏洞,就将大佬…