Jupyter Notebook 是一个功能强大的交互式计算环境,广泛应用于数据科学、机器学习和数据分析领域。它允许用户在浏览器中创建和共享包含代码、文本、数学公式、图表等的文档。本文将为您提供一份简明的 Jupyter Notebook 入门教程,帮助您快速上手。
1. 什么是 Jupyter Notebook?
Jupyter Notebook 是一种基于 Web 的交互式计算环境,支持多种编程语言(如 Python、R 和 Julia)。它的核心是一个 .ipynb
文件,这种文件可以保存代码、输出结果、Markdown 文本和其他多媒体内容。
2. 安装 Jupyter Notebook
(1) 使用 Anaconda 安装
最简单的方式是通过 Anaconda 安装 Jupyter Notebook。Anaconda 是一个包含了许多科学计算库的 Python 发行版,其中已经集成了 Jupyter Notebook。
安装完成后,在终端或命令提示符中运行以下命令启动 Jupyter Notebook:
jupyter notebook
Anaconda Navigator 是 Anaconda 提供的一个图形化用户界面(GUI),用于管理和启动各种数据科学工具。通过它,您可以轻松管理环境、安装软件包、运行 Jupyter Notebook 和其他应用程序,而无需直接操作命令行。
(2) 使用 pip 安装
如果您使用的是基础的 Python 环境,可以通过 pip
安装 Jupyter Notebook:
pip install notebook
然后运行 jupyter notebook
启动。
3. 创建第一个 Notebook
启动 Jupyter Notebook 后,您会在浏览器中看到如下界面:
http://localhost:8888/
- 点击右上角的 “New” 按钮,选择 “Python 3”。
- 这将创建一个新的 Notebook 文件,并自动命名为
Untitled.ipynb
。您可以点击文件名进行重命名。
4. 示例
- Jupyter Notebook 界面介绍
- 创建和运行代码单元
- 使用 Markdown 编写文本
- 保存和共享 Notebook
- 导入和导出
.ipynb
文件
Jupyter Notebook 界面介绍
Jupyter Notebook 的界面主要由以下几个部分组成:
- 文件浏览器:显示当前目录下的文件和文件夹。
- 工具栏:提供了一些常用的操作按钮,如保存、运行、停止等。
- 代码单元:你可以在这里编写和运行代码。
- 输出区域:代码的运行结果将显示在这里。
创建和运行代码单元
在 Jupyter Notebook 中,你可以创建代码单元来编写和运行代码。代码单元支持多种编程语言,默认是 Python。
- 点击工具栏上的
+
按钮,创建一个新的代码单元。 - 在代码单元中输入以下代码:
print("Hello, Jupyter!")
- 按下
Shift + Enter
运行代码单元。你将在输出区域看到Hello, Jupyter!
。
使用 Markdown 编写文本
除了代码单元,你还可以使用 Markdown 单元来编写文本。Markdown 是一种轻量级标记语言,可以让你轻松地格式化文本。
- 点击工具栏上的
+
按钮,创建一个新的 Markdown 单元。 - 在 Markdown 单元中输入以下内容:
# 这是一个标题这是一个段落。你可以使用 **粗体**、*斜体* 和 `代码` 来格式化文本。
- 按下
Shift + Enter
运行 Markdown 单元,你将看到格式化后的文本。
保存和共享 Notebook
Jupyter Notebook 会自动保存你的工作,但你也可以手动保存。点击工具栏上的保存按钮,或者按下 Ctrl + S
。
你可以将 Notebook 保存为 .ipynb
文件,这种文件格式包含了代码、文本和输出结果。你可以将 .ipynb
文件分享给他人,他们可以在自己的 Jupyter Notebook 中打开并查看。
导入和导出 .ipynb
文件
导入 .ipynb
文件
- 在 Jupyter Notebook 的文件浏览器中,点击
Upload
按钮。 - 选择你要导入的
.ipynb
文件,然后点击Open
。 - 文件将被上传到当前目录,你可以点击文件名打开它。
导出 .ipynb
文件
- 在 Jupyter Notebook 中,点击
File
菜单,然后选择Download as
。 - 你可以选择将 Notebook 导出为多种格式,如
.ipynb
、.html
、.pdf
等。
5. .ipynb VS Code配置
http://localhost:8888/tree?token=cebb3492d2305257b1105bcae013eae2b5bbe22dcb8875ab
运行jypyter时,注意token
选择现有jypter服务器 填入
6. .ipynb 示例文件
新建文件,复制文本,保存,导入jupyter or VS Code 查看示例
{"cells": [{"cell_type": "markdown","metadata": {},"source": ["# Jupyter Notebook 入门示例\n","这是一个包含多个示例的 Jupyter Notebook 文件,适合初学者学习。"]},{"cell_type": "markdown","metadata": {},"source": ["# Jupyter Notebook 入门示例\n","这是一个包含多个示例的 Jupyter Notebook 文件,适合初学者学习。"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["# 基本数学运算\n","a = 10\n","b = 5\n","print(f\"加法: {a + b}\")\n","print(f\"减法: {a - b}\")\n","print(f\"乘法: {a * b}\")\n","print(f\"除法: {a / b}\")"]},{"cell_type": "markdown","metadata": {},"source": ["## 数据处理 (使用 Pandas)"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["import sys\n","print(sys.executable)"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["# 可以在jypyter中安装环境,但是我这里安装失败了,求点拨。我还是开了个终端,在conda环境里面装的\n","!pip install pandas\n","\n","import pandas as pd\n","\n","# 创建一个简单的数据表\n","data = {'Name': ['Alice', 'Bob', 'Charlie'],\n"," 'Age': [25, 30, 35],\n"," 'City': ['New York', 'Los Angeles', 'Chicago']}\n","\n","df = pd.DataFrame(data)\n","print(\"数据表如下:\")\n","display(df)\n","\n","# 查看数据的基本信息\n","print(\"\\n数据描述:\")\n","print(df.describe())"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["## 数据可视化 (使用 Matplotlib 和 Seaborn)"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["import matplotlib.pyplot as plt\n","import seaborn as sns\n","\n","# 生成一些随机数据\n","x = [1, 2, 3, 4, 5]\n","y = [10, 15, 7, 12, 9]\n","\n","# 绘制折线图\n","plt.figure(figsize=(8, 4))\n","plt.plot(x, y, marker='o')\n","plt.title(\"test line\")\n","plt.xlabel(\"X\")\n","plt.ylabel(\"Y\")\n","plt.grid(True)\n","plt.show()\n","\n","# 使用 Seaborn 绘制柱状图\n","sns.barplot(x=x, y=y)\n","plt.title(\"Seaborn\")\n","plt.show()"]},{"cell_type": "markdown","metadata": {},"source": ["## 简单的机器学习模型 (使用 Scikit-learn)"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["from sklearn.datasets import load_iris\n","from sklearn.model_selection import train_test_split\n","from sklearn.tree import DecisionTreeClassifier\n","from sklearn.metrics import accuracy_score\n","\n","# 加载 Iris 数据集\n","iris = load_iris()\n","X, y = iris.data, iris.target\n","\n","# 划分训练集和测试集\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# 训练决策树模型\n","model = DecisionTreeClassifier()\n","model.fit(X_train, y_train)\n","\n","# 预测并计算准确率\n","y_pred = model.predict(X_test)\n","accuracy = accuracy_score(y_test, y_pred)\n","print(f\"模型准确率: {accuracy:.2f}\")"]},{"cell_type": "markdown","metadata": {},"source": ["## 文件读写操作"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["# 写入文件\n","with open('example.txt', 'w') as file:\n"," file.write(\"Hello, Jupyter Notebook!\")\n","\n","# 读取文件\n","with open('example.txt', 'r') as file:\n"," content = file.read()\n"," print(\"文件内容:\")\n"," print(content)"]},{"cell_type": "markdown","metadata": {},"source": ["## 循环与条件语句"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["# 使用循环打印斐波那契数列\n","n = 10 # 数列长度\n","fibonacci = [0, 1]\n","for i in range(2, n):\n"," fibonacci.append(fibonacci[-1] + fibonacci[-2])\n","print(f\"斐波那契数列前 {n} 项: {fibonacci}\")\n","\n","# 条件语句示例\n","num = 7\n","if num % 2 == 0:\n"," print(f\"{num} 是偶数\")\n","else:\n"," print(f\"{num} 是奇数\")"]},{"cell_type": "markdown","metadata": {},"source": ["## 使用 Numpy 进行数组操作"]},{"cell_type": "code","execution_count": null,"metadata": {},"outputs": [],"source": ["!pip install numpy\n","\n","import numpy as np\n","\n","# 创建一个二维数组\n","array = np.array([[1, 2, 3], [4, 5, 6]])\n","print(\"原始数组:\")\n","print(array)\n","\n","# 数组转置\n","transposed_array = array.T\n","print(\"\\n转置后的数组:\")\n","print(transposed_array)\n","\n","# 数组求和\n","total_sum = np.sum(array)\n","print(f\"\\n数组所有元素的和: {total_sum}\")"]}],"metadata": {"kernelspec": {"display_name": "Python 3 (ipykernel)","language": "python","name": "python3"},"language_info": {"codemirror_mode": {"name": "ipython","version": 3},"file_extension": ".py","mimetype": "text/x-python","name": "python","nbconvert_exporter": "python","pygments_lexer": "ipython3","version": "3.10.16"}},"nbformat": 4,"nbformat_minor": 4
}
7. 小结
通过本教程,你已经学会了如何安装、启动和使用 Jupyter Notebook。你可以在代码单元中编写和运行代码,在 Markdown 单元中编写文本,并保存和共享你的 Notebook。Jupyter Notebook 是一个强大的工具,适用于数据分析、机器学习、教育等多种场景。
希望这篇教程对你有所帮助!如果你有任何问题或建议,欢迎在评论区留言。
Happy Coding! 🚀
— by AGI