SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

PSO-TCN-BiGRU-Attention是一个复杂的模型结构,通过粒子群算法(Particle Swarm Optimization)优化时间卷积(Temporal Convolutional Networks, TCN)和双向门控循环单元(Bidirectional Gated Recurrent Unit, BiGRU)的融合注意力机制(Attention)来进行多变量时间序列预测。

粒子群算法(Particle Swarm Optimization, PSO):PSO是一种元启发式优化算法,模拟鸟群觅食行为,通过不断调整粒子的位置和速度来搜索最优解。在这个上下文中,PSO用于优化模型的超参数或权重参数,以达到更好的预测性能。

时间卷积(Temporal Convolutional Networks, TCN):TCN是一种卷积神经网络(CNN)的变体,专门用于处理时间序列数据。它通过一系列的卷积层和池化层来捕捉时间序列数据中的长期依赖关系,并提取有用的特征。

双向门控循环单元(Bidirectional Gated Recurrent Unit, BiGRU):BiGRU是一种循环神经网络(RNN)的变体,结合了前向和后向的循环连接。它允许模型在时间序列中同时考虑过去和未来的信息,以更好地捕捉时间序列中的动态模式。

注意力机制(Attention):注意力机制用于加权地关注时间序列中的不同部分,以便模型能够更好地处理重要的信息。通过引入注意力机制,模型可以自适应地选择性地关注时间序列中的不同位置或特征。

这个复合模型的目标是结合PSO优化方法,TCN的时间卷积能力,BiGRU的双向信息处理和注意力机制的重要性权重,以提高多变量时间序列预测的准确性和泛化能力。通过这种方式,模型可以更好地捕捉时间序列数据中的长期依赖关系和重要特征,从而提高预测性能。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% %% 粒子群算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close allX = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end%% 优化算法优化前,构建优化前的TCN_BiGRU_Attention模型outputSize = 1;  %数据输出y的维度  
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.1;
numBlocks = 2;layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);     convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286670.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Capture One Pro 23中文---颠覆性的图像编辑与色彩配置

Capture One Pro 23是一款功能强大且专业的RAW图像编辑处理软件。它拥有全球领先的色彩管理技术和精细的图像编辑工具,可以对图片进行多种精细调整,包括曝光、色温、对比度、锐度等,以满足用户特定的后期处理需求。此外,Capture O…

DNS 服务 Unbound 部署最佳实践

文章目录 安装unbound-control配置启动服务测试 参考: 官网地址:https://nlnetlabs.nl/projects/unbound/about/ 详细文档:https://unbound.docs.nlnetlabs.nl/en/latest/index.html DNS服务Unbound部署于使用 https://cloud.tencent.com/…

Filter、Listener、AJAX

Filter 概念:Filter 表示过滤器,是JavaWeb三大组件(Servlet、Filter、 Listener)之一。 过滤器可以把对资源的请求拦截下来,从而实现一些特殊的功能。 过滤器一般完成一些通用的操作,比如:权限控制、统一编码处理、敏感…

CentOS使用Docker部署Halo并结合内网穿透实现公网访问本地博客

文章目录 1. Docker部署Halo1.1 检查Docker版本如果未安装Docker可参考已安装Docker步骤:1.2 在Docker中部署Halo 2. Linux安装Cpolar2.1 打开服务器防火墙2.2 安装cpolar内网穿透 3. 配置Halo个人博客公网地址4. 固定Halo公网地址 本文主要介绍如何在CentOS 7系统使…

Nextcloud激活被锁用户

Nextcloud激活用户 如果docker下没有安装sudo 和 vim执行下面命令,安装了则跳过 #进入docker内部 #更新apt-get apt-get update #安装sudo apt-get install sudo #安装vim apt-get install vim 修改下面文件内容,否则执行occ命令可能报错 进入上面查询…

连接数据库(MySQL)的JDBC

目录 JDBC简介快速入门API详解DriverManager(驱动管理类)注册驱动:获取数据库连接(对象): Connection(数据库连接对象)获取执行SQL的对象管理事务 Statement(执行SQL语句)执行DML、DDL语句执行DQL语句 Resu…

轨迹预测后处理之非极大值抑制(NMS)

非极大值抑制是图像处理里面的一种算法(比如边缘检测会使用到) 轨迹预测这里借鉴了其思想,比如说对于某个场景中的某辆车,我们使用模型预测 64 条轨迹或者更多,以很好地捕获多模态性,同时每条轨迹对应一个…

JavaScript 基础、内置对象、BOM 和 DOM 常用英文单词总结

一提到编程、软件、代码。对于英语不是很熟悉的同学望而却步。其实没有想像中的难么难,反复练习加上自己的思考、总结,会形成肌肉记忆。整理一下,初学者每天30遍。 1、JavaScript 基础语法 break:中断循环或 switch 语句的执行。…

Gif动图怎么快速制作?两招教你在线做

Gif动图作为一种实用的图片格式,因为其体积小,画面丰富,所以在各大聊天软件中非常的受欢迎。小伙伴们是不是很好奇这种gif动态图片是如何制作的吧!下面,小编就给大家分享两个快速制作gif动画的小技巧!不用下…

Matlab从入门到精通课程

教程介绍 MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 学习地址 链接:https://pan.baidu.com/s/1PxGarBwQusMzwPVqcE…

内网使用rustdesk进行远程协助

文章目录 前言一、搭建rustdesk中继服务器二、搭建文件下载服务器三、创建引导脚本四、使用 前言 内网没有互联网环境,没法使用互联网上有中继服务器的远程协助工具,如teamviewer、todesk、向日癸等;在内网进行远程维护可以自己搭建中继服务…

TS + Vue3 elementUI 表格列表中如何方便的标识不同类型的内容,颜色区分 enum

TS Vue3 elementUI 表格列表中如何方便的标识不同类型的内容,颜色区分 enum 本文内容为 TypeScript 一、基础知识 在展示列表的时候,列表中的某个数据可能是一个类别,比如: enum EnumOrderStatus{"未受理" 1,"…

python能做什么

python能做什么 Web开发:Python具有许多流行的Web框架,如Django和Flask,使得它成为Web开发的首选语言。它简洁、易于学习、且拥有丰富的生态系统,能够快速构建高性能的Web应用。 数据科学和机器学习:Python在数据科学…

51单片机—直流电机

1.元件介绍 2.驱动电路 3.电机调速 一般会保证一个周期的时间是一样的 应用&#xff1a; 1.LED呼吸灯 #include <REGX52.H>sbit LEDP2^0;void Delay(unsigned int t) {while(t--); } void main() {unsigned char Time,i;while(1){for(Time0;Time<100;Time){for(i0;…

【MATLAB源码-第16期】基于matlab的MSK定是同步仿真,采用gardner算法和锁相环。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 **锁相环&#xff08;PLL&#xff09;** 是一种控制系统&#xff0c;用于将一个参考信号的相位与一个输入信号的相位同步。它在许多领域中都有应用&#xff0c;如通信、无线电、音频、视频和计算机系统。锁相环通常由以下几个…

matlab和stm32的安装环境。能要求与时俱进吗,en.stm32cubeprg-win64_v2-6-0.zip下载太慢了

STM32CubeMX 6.4.0 Download STM32CubeProgrammer 2.6.0 Download 版本都更新到6.10了&#xff0c;matlab还需要6.4&#xff0c;除了st.com其他地方都没有下载的,com.cn也没有。曹 还需要那么多固件安装。matlab要求制定固件位置&#xff0c;然后从cubemx中也指定…

mac WPS 无格式粘贴

操作办法 文件–文字偏好设置–编辑–剪切和粘贴选项

基于yolov8安全帽检测的系统

基于yolov8安全帽检测的系统 项目描述&#xff1a; 安全头盔检测&#xff08;计算机视觉&#xff09; 1.自训练数据集1538张数据图片&#xff0c;进行标注&#xff0c;并进行100轮的训练&#xff0c;准确率达0.966 2.使用 Flask 和 Ultralytics YOLOv8 模型开发了一个 Web 应…

阿里CICD流水线Docker部署,将阿里镜像私仓中的镜像部署到服务器中

文章目录 阿里CICD流水线Docker部署&#xff0c;将阿里镜像私仓中的镜像部署到服务器中一、CICD流水线的初步使用可以看我之前的两篇文章二、添加部署任务&#xff0c;进行Docker部署&#xff0c;创建一个阿里的试用主机1、选择主机部署&#xff0c;并添加服务主机2、创建免费体…

Excel·VBA数组平均分组问题

看到一个帖子《excel吧-数据分组问题》&#xff0c;对一组数据分成4组&#xff0c;使每组的和值相近 上一篇文章《ExcelVBA数组分组问题》&#xff0c;解决了这个帖子问题的第1步&#xff0c;即获取所有数组分组形式的问题 接下来要获取分组和值最相近的一组&#xff0c;只需计…