关系(二)利用python绘制热图

关系(二)利用python绘制热图

热图 (Heatmap)简介

1

热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl# 自定义数据
    df = pd.DataFrame(np.random.random((5,5)), columns=["a","b","c","d","e"])# 利用seaborn的heatmap函数创建
    sns.heatmap(df)plt.show()
    

    2

定制多样化的热图

自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

seaborn主要利用heatmap绘制热图,可以通过seaborn.heatmap了解更多用法

  1. 不同输入格式的热图

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd
    np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 初始化
    fig = plt.figure(figsize=(12,8))# 宽型:是一个矩阵,其中每一行都是一个个体,每一列都是一个观察值。即热图的每个方块代表一个单元格
    df = pd.DataFrame(np.random.random((6,5)), columns=["a","b","c","d","e"])ax = plt.subplot2grid((2, 2), (0, 0), colspan=1)
    sns.heatmap(df)
    ax.set_title('宽型')# 方型:相关矩阵热图
    df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) 
    corr_matrix=df.corr() # 计算相关矩阵ax = plt.subplot2grid((2, 2), (0, 1), colspan=1)
    sns.heatmap(corr_matrix)
    ax.set_title('方型')# 方型:对角矩阵
    df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) 
    corr_matrix=df.corr() # 计算相关矩阵
    mask = np.zeros_like(corr_matrix)
    mask[np.triu_indices_from(mask)] = True # 生成上三角蒙版ax = plt.subplot2grid((2, 2), (1, 0), colspan=1)
    sns.heatmap(corr_matrix, mask=mask, square=True)
    ax.set_title('方型-对角矩阵')# 长型:每一行代表一个观测结果,输入三个变量(x,y,z)
    people = np.repeat(("A","B","C","D","E"),5)
    feature = list(range(1,6))*5
    value = np.random.random(25)
    df = pd.DataFrame({'feature': feature, 'people': people, 'value': value })
    # 数据透视
    df_wide = df.pivot_table( index='people', columns='feature', values='value') ax = plt.subplot2grid((2, 2), (1, 1), colspan=1)
    sns.heatmap(df_wide)
    ax.set_title('长型')fig.tight_layout() # 自动调整间距
    plt.show()
    

    3

  2. 自定热图

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd
    np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 自定义数据
    df = pd.DataFrame(np.random.random((10,10)), columns=["a","b","c","d","e","f","g","h","i","j"])# 初始化
    fig = plt.figure(figsize=(9,8))# 显示值标签
    ax = plt.subplot2grid((3, 2), (0, 0), colspan=1)
    sns.heatmap(df, annot=True, annot_kws={"size": 7})
    ax.set_title('显示值标签')# 自定义网格线
    ax = plt.subplot2grid((3, 2), (0, 1), colspan=1)
    sns.heatmap(df, linewidths=2, linecolor='yellow')
    ax.set_title('自定义网格线')# 移除x、y或者颜色bar
    ax = plt.subplot2grid((3, 2), (1, 0), colspan=1)
    sns.heatmap(df, yticklabels=False, cbar=False)
    ax.set_title('移除部分轴元素')# 减少标签数量
    ax = plt.subplot2grid((3, 2), (1, 1), colspan=1)
    sns.heatmap(df, xticklabels=4)
    ax.set_title('减少标签数量')# 指定中心值
    ax = plt.subplot2grid((3, 2), (2, 0), colspan=1)
    sns.heatmap(df, center=1)
    ax.set_title('指定中心值')# 指定颜色
    ax = plt.subplot2grid((3, 2), (2, 1), colspan=1)
    sns.heatmap(df, cmap="YlGnBu")
    ax.set_title('指定颜色')fig.tight_layout() # 自动调整间距
    plt.show()
    

    4

  3. 数据标准化

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd
    np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 自定义数据
    df = pd.DataFrame(np.random.randn(10,10) * 4 + 3)
    # 列含异常值与标准化
    df_col = df.copy()
    df_col[1]=df_col[1]+40 # 构造异常数据点
    df_norm_col=(df_col-df_col.mean())/df_col.std() # 按列标准化
    # 行含异常值与标准化
    df_row = df.copy()
    df_row.iloc[2]=df_row.iloc[2]+40 # 构造异常数据点
    df_norm_row = df_row.apply(lambda x: (x-x.mean())/x.std(), axis = 1) # 按行标准化# 初始化
    fig = plt.figure(figsize=(12,8))# 列含异常数据
    ax = plt.subplot2grid((2, 2), (0, 0), colspan=1)
    sns.heatmap(df_col, cmap='viridis')
    ax.set_title('列含异常数据')# 按列标准化
    ax = plt.subplot2grid((2, 2), (0, 1), colspan=1)
    sns.heatmap(df_norm_col, cmap='viridis')
    ax.set_title('按列标准化')# 行含异常数据
    ax = plt.subplot2grid((2, 2), (1, 0), colspan=1)
    sns.heatmap(df_row, cmap='viridis')
    ax.set_title('行含异常数据')# 按行标准化
    ax = plt.subplot2grid((2, 2), (1, 1), colspan=1)
    sns.heatmap(df_norm_col, cmap='viridis')
    ax.set_title('按行标准化')fig.tight_layout() # 自动调整间距
    plt.show()
    

    5

  4. 引申-聚类热图

    可以通过seaborn.clustermap了解更多用法

    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import pandas as pd# 导入数据
    df = pd.read_csv('https://raw.githubusercontent.com/holtzy/The-Python-Graph-Gallery/master/static/data/mtcars.csv')
    df = df.set_index('model')# 基本聚类热图
    g = sns.clustermap(df, standard_scale=1) # 标准化处理plt.show()
    

    5

总结

以上通过seaborn的heatmap快速绘制热图,并通过修改参数或者辅以其他绘图知识自定义各种各样的热图来适应相关使用场景。

共勉~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/294916.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个 hipsolver 特征值示例

1,原理 通过雅可比旋转,对对称矩阵计算特征值和特征向量; 通过初等正交变换,每次把其中一个非主对角元素消成零,最终只剩主对角线非零元素为特征值,同时把初等变换累积下来,构成特征向量。 2&a…

CAS(Compare And Swap)

目录 CAS概念 乐观锁与悲观锁 ABA问题 Unsafe类 ​编辑 原子类 基本类型原子类 原子引用类 原子数组 原子更新器类 原子累加器 CAS概念 CAS是Compare And Swap的缩写,中文翻译成:比较并交换,实现无锁并发时常用到的一种技术。它一…

element plus的el-image图片发布到nginx不显示

问题&#xff1a; <el-image alt""src"/img/month-b.png" class"card-icon"style"width: 89px;height: 89px;right: -7px;top: -5px;"/> 部署到nginx二级路由访问地址是&#xff1a; http://192.168.1.207/divided/# 这时候使用…

总结jvm中GC机制(垃圾回收)

前言 本篇博客博主将介绍jvm中的GC机制&#xff0c;坐好板凳发车啦~~ 一.GC相关 1.1回收栈内存 对于虚拟机栈&#xff0c;本地方法栈这部分区域而言&#xff0c;其生命周期与相关线程相关&#xff0c;随线程而生&#xff0c;随线程而灭。并且这三个区域的内存分配与回收具有…

OpenHarmony:全流程讲解如何编写ADC平台驱动以及应用程序

ADC&#xff08;Analog to Digital Converter&#xff09;&#xff0c;即模拟-数字转换器&#xff0c;可将模拟信号转换成对应的数字信号&#xff0c;便于存储与计算等操作。除电源线和地线之外&#xff0c;ADC只需要1根线与被测量的设备进行连接。 一、案例简介 该程序是基于…

github本地仓库push到远程仓库

1.从远程仓库clone到本地 2.生成SSH秘钥&#xff0c;为push做准备 在Ubuntu命令行输入一下内容 [rootlocalhost ~]# ssh-keygen -t rsa < 建立密钥对&#xff0c;-t代表类型&#xff0c;有RSA和DSA两种 Generating public/private rsa key pair. Enter file in whi…

Synchronized锁升级过程

无锁-->偏向锁---> 轻量级锁---->重量级锁 ①、从无锁到偏向锁&#xff1a; 当一个线程首次访问同步块时&#xff0c;如果此对象无锁状态且偏向锁未被禁用&#xff0c;JVM 会将该对象头的锁标记改为偏向锁状态&#xff0c;并记录下当前线程的 ID。此时&#xff0c;对…

Java进阶-反射的详解与应用

本文深入探讨了Java反射机制的核心概念、应用实例及其在现代Java开发中的重要性。文章首先介绍了反射的基本原理和能力&#xff0c;包括在运行时动态获取类信息、操作对象字段和方法的能力。随后&#xff0c;通过具体代码示例&#xff0c;展示了如何利用反射进行字段访问、方法…

3.5网安学习第三阶段第五周回顾(个人学习记录使用)

本周重点 ①SSRF服务器端请求伪造 ②序列化和反序列化 ③Vaudit代码审计 本周主要内容 ①SSRF服务器端请求伪造 一、概述 SSRF: server site request forgery (服务器端请求伪造)。 SSR: 服务端请求&#xff0c;A服务器通过函数向B服务器发送请求。 SSRF发生的前提条件…

Linux:入门篇

文章目录 前言1. Linuxd的安装环境2.Linux的简单介绍2.1 新建目录2.2 新建文件 3.指令到底是什么&#xff1f;4.shell命令以及运行原理5.总结 前言 很多人对于Linux的学习总是感觉无法下手&#xff0c;不知道从何开始学习&#xff0c;相信这篇文章将会为你提供一个清晰的思路。…

高精度算法(加、减、乘、除,使用c++实现)

一、概念 在我们进行计算的过程中&#xff0c;经常会遇到几十位&#xff0c;甚至几百位的数字的计算问题&#xff0c;也有可能会遇到小数点后几十位&#xff0c;几百位的情况&#xff0c;而我们面对这样的情况下&#xff0c; 和 的数据范围显然是不够使用的了。因此这时&am…

Node.js-知识点学习总结归纳

Node.js-知识点学习总结归纳 安装nodenode运行方式通过Node.js直接运行js文件&#xff08;也就不用通过网页html了&#xff09;绝对路径调用:相对路径调用&#xff1a;直接运行js命令&#xff1a; Vscode控制台使用node运行js文件 安装node 这个就不用讲了吧&#xff0c;网上搜…

开源知识库平台Raneto--使用Docker部署Raneto

文章目录 一、Raneto介绍1.1 Raneto简介1.2 知识库介绍 二、阿里云环境2.1 环境规划2.2 部署介绍 三、环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载Raneto镜像五、部署Raneto知识库平台5.1 创建挂载目录5.2 编辑config.js文件5.3 编…

Sui Basecamp日程公布,两天超50场密集分享等你来参加

随着4月的来临&#xff0c;我们也怀着激动的心情迎来了Sui全球旗舰品牌会议Sui Basecamp的个位数倒计时。 Sui Basecamp将在4月10–11日巴黎区块链周期间举行&#xff0c;Web3构建者、知名企业和信仰者齐聚一堂&#xff0c;在这里共同创造、学习和建立联系。Basecamp将由具有对…

左值与右值,以及c++11的相关特性。

目录 左值 右值 左值引用总结&#xff1a; 右值引用总结&#xff1a; 右值引用使用场景和意义&#xff1a; 1、左值引用的使用场景&#xff1a; 编译器优化1&#xff1a; 2、移动构造与移动赋值&#xff1a; 3、右值引用的使用场景&#xff1a; 编译器优化2&#xff1a…

excel匹配替换脱敏身份证等数据

假如excel sheet1中有脱敏的身份证号码和姓名&#xff0c;如&#xff1a; sheet2中有未脱敏的数据数据 做法如下&#xff1a; 1、在sheet2的C列用公式 LEFT(A2,6)&REPT("*",8)&RIGHT(A2,4) 做出脱敏数据&#xff0c;用来与sheet1的脱敏数据匹配 2、在sheet…

【卫星家族】 | 高分六号卫星影像及获取

1. 卫星简介 高分六号卫星&#xff08;GF-6&#xff09;于2018年6月2日在酒泉卫星发射中心成功发射&#xff0c;是高分专项中的一颗低轨光学遥感卫星&#xff0c;也是我国首颗精准农业观测的高分卫星&#xff0c;具有高分辨率、宽覆盖、高质量成像、高效能成像、国产化率高等特…

Mysql数据库:故障分析与配置优化

目录 前言 一、Mysql逻辑架构图 二、Mysql单实例常见故障 1、无法通过套接字连接到本地MySQL服务器 2、用户rootlocalhost访问被拒绝 3、远程连接数据库时连接很慢 4、无法打开以MYI结尾的索引文件 5、超出最大连接错误数量限制 6、连接过多 7、配置文件/etc/my.cnf权…

python 哔哩哔哩视频去水印

使用python 去除视频中的水印 1. 需要安装的包 pip install moviepy pip install numpy pip install opencv_python pip install tqdm 2. 代码 import cv2 import numpy as np import glob from moviepy.editor import VideoFileClip import os from tqdm import tqdm# 判…

2024 年每个程序员都应该尝试的 8 个AI工具

随着人工智能技术的极速发展&#xff0c;新的 AI 工具正以前所未有的速度涌现&#xff0c;为开发者们带来了前所未有的机会和挑战。在这个不断演进的时代&#xff0c;掌握最新的 AI 技术已成为每个程序员的必修课。 在本文中&#xff0c;我们收集了8 个程序员在 2024 年值得尝…