【计算机视觉】四篇基于Gaussian Splatting的SLAM论文对比

本文对比四篇论文:

[1] Gaussian Splatting SLAM
[2] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
[3] Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting
[4] GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting

文章目录

  • 一、文章概括
    • [1] Gaussian Splatting SLAM
      • 1. 相机追踪(Tracking)
      • 2. 关键帧选取(Keyframing)
      • 3. Gaussian的新增和删除
      • 4. 三维重建
    • [2] SplaTAM
      • 1. 初始化(Initialization)
      • 2. 相机追踪(Tracking)
      • 3. 高斯致密化(Gaussian Densification)
      • 4. 高斯场景更新(Gaussian Map Updating)
    • [3] Gaussian-SLAM
      • 1. 子场景(Sub-map)
      • 2. 形状和颜色编码(Geometry and Color Encoding)
      • 3. 相机追踪(Tracking)
    • [4] GS-SLAM
      • 1. 自适应3D高斯扩张重建(Adaptive 3D Gaussian Expanding Mapping)
      • 2. 相机追踪(Tracking)
      • 3. 关键帧选取
      • 4. Bundle Adjustment
  • 二、方法的异同
      • 共同点
      • 不同点
  • 三、性能对比
    • 1. 相机追踪精度
    • 2. 重渲染精度
    • 3. 训练和渲染FPS
  • 附录
    • 文章局限性
    • 迭代次数

一、文章概括

[1] Gaussian Splatting SLAM

这篇论文主要解决的是RGB-D或单目相机的三维重建问题。

1. 相机追踪(Tracking)

在估计相机外参时,该方法最小化以下目标函数:
其中 λ p h o \lambda_{pho} λpho是权重超参数,
I ( G , T C W ) I(\mathcal{G},\boldsymbol{T}_{CW}) I(G,TCW)表示从外参为 T C W \boldsymbol{T}_{CW} TCW的相机渲染高斯集合 G \mathcal{G} G所得的图片, I ˉ \bar{I} Iˉ是真实图片; E p h o E_{pho} Epho为图片误差。
E g e o E_{geo} Egeo为深度误差,仅在深度信息可用时引入, D ( G , T C W ) D(\mathcal{G},\boldsymbol{T}_{CW}) D(G,TCW)是渲染出来的深度(渲染方式和RGB值类似,均为按不透明度和透光率加权平均), D ˉ \bar{D} Dˉ是深度数据。

2. 关键帧选取(Keyframing)

该方法选取关键帧窗口 W k \mathcal{W}_k Wk,选取依据是两帧之间共同可见Gaussians的比例(判断Gaussian是否可见的方法就是判断到该Gaussian的透光率是否达到0.5)。定义共同可见度(covisibility)为当前帧 i i i与上一个关键帧 j j j之间可见Gaussians集合的IoU。若共同可见度低于某个阈值,或相对平移 t i j t_{ij} tij相对于深度中位数较大,则帧 i i i被视为关键帧。

同时,在当前帧 i i i被加入关键帧窗口时,也要移除 W k \mathcal{W}_k Wk中已经陈旧的关键帧。当帧 j ∈ W k j\in\mathcal{W}_k jWk与当前帧 i i i可见Gaussians的重叠系数(OC, Overlapping Coefficient)小于某个阈值时,就将其移除。OC的定义如下:

3. Gaussian的新增和删除

每个关键帧都会添加新Gaussians。该方法用关键帧中每个像素点的深度 D D D(在单目相机的情形该方法会渲染深度来估计 D D D的值)作为新增Gaussians的参考位置。由于 D D D不一定准确,新Gaussians的深度服从一个均值为 D D D、方差较小的正态分布;对于没有深度估计的像素,新Gaussians的深度服从均值为渲染图像深度中位数、方差较大的正态分布。在一开始还没有Gaussian时,新增Gaussian的位置是随机的。

当关键帧窗口 W k \mathcal{W}_k Wk已满,该方法执行删除操作。如果最近三个关键帧内新增的Gaussians没有在其他至少三帧内观察到,那就将它们移除。不透明度小于 0.7 0.7 0.7的Gaussians也会被移除。

4. 三维重建

这部分的目的是维持一个协调的3D结构并优化新插入的Gaussians。参与优化的帧集合为 W = W k ∪ W r \mathcal{W}=\mathcal{W}_k\cup \mathcal{W}_r W=WkWr,其中 W r \mathcal{W}_r Wr是随机选取的两个以往的帧。3D Gaussians的渲染过程没有对沿光线方向的Gaussian进行约束,这可能会导致SLAM过程中出现伪影。因此,该方法惩罚“拉得太长”的Gaussians,方法是引入各向同性约束(isotropic regularization):
其中 s i \mathbf{s}_i si是第 i i i个Gaussian的缩放参数, s ~ i \tilde{\mathbf{s}}_i s~i是其在各个方向的均值。

对于三维重建部分,该方法求解以下最优化问题: min ⁡ T C W k ∈ S E ( 3 ) ∀ k ∈ W , G ∑ ∀ k ∈ W E p h o k + λ i s o E i s o \min\limits_{\underset{\forall k\in\mathcal{W}}{\boldsymbol{T}_{CW}^k\in\mathbf{SE}(3)},\mathcal{G}} \sum\limits_{\forall k\in\mathcal{W}}E_{pho}^k+\lambda_{iso}E_{iso} kWTCWkSE(3),GminkWEphok+λisoEiso其中上标中的 k k k代表第 k k k帧, λ i s o \lambda_{iso} λiso E i s o E_{iso} Eiso的系数(是一个超参数)。

[2] SplaTAM

这篇论文处理的对象是“single unposed RGB-D camera”。

该方法引入了“silhouette image”(一种灰度图?)的概念,其计算公式如下:

其中 f i ( p ) f_i(\mathbf{p}) fi(p)代表Gaussian i i i投影到于像素 p \mathbf p p的不透明度。令 α i = f i ( p ) \alpha_i=f_i(\mathbf{p}) αi=fi(p)。注意到 1 − S ( p ) = 1 − ∑ i = 1 n α i ∏ j = 1 i − 1 [ 1 − α j ] = 1 − α 1 − ( 1 − α 1 ) α 2 − ( 1 − α 1 ) ( 1 − α 2 ) α 3 − ( 1 − α 1 ) ( 1 − α 2 ) ⋯ ( 1 − α n − 1 ) α n = ( 1 − α 1 ) [ 1 − α 2 − ( 1 − α 2 ) α 3 − ⋯ − ( 1 − α 2 ) ⋯ ( 1 − α n − 1 ) α n ] = ( 1 − α 1 ) ( 1 − α 2 ) [ 1 − α 3 − ⋯ − ( 1 − α 3 ) ⋯ ( 1 − α n − 1 ) α n ] = ⋯ = ( 1 − α 1 ) ( 1 − α 2 ) ⋯ ( 1 − α n ) \begin{aligned} 1-S(\mathbf{p})&=1-\sum\limits_{i=1}^n \alpha_i\prod\limits_{j=1}^{i-1}[1-\alpha_j]\\ &=1-\alpha_1-(1-\alpha_1)\alpha_2-(1-\alpha_1)(1-\alpha_2)\alpha_3 - (1-\alpha_1)(1-\alpha_2)\cdots(1-\alpha_{n-1})\alpha_n\\ &=(1-\alpha_1)[1-\alpha_2-(1-\alpha_2)\alpha_3-\cdots-(1-\alpha_2)\cdots(1-\alpha_{n-1})\alpha_n]\\ &=(1-\alpha_1)(1-\alpha_2)[1-\alpha_3-\cdots-(1-\alpha_3)\cdots(1-\alpha_{n-1})\alpha_n]\\ &=\cdots\\ &=(1-\alpha_1)(1-\alpha_2)\cdots(1-\alpha_n) \end{aligned} 1S(p)=1i=1nαij=1i1[1αj]=1α1(1α1)α2(1α1)(1α2)α3(1α1)(1α2)(1αn1)αn=(1α1)[1α2(1α2)α3(1α2)(1αn1)αn]=(1α1)(1α2)[1α3(1α3)(1αn1)αn]==(1α1)(1α2)(1αn)这就是光线穿过所有Gaussians后的透光率,所以 S ( p ) S(\mathbf p) S(p)也就是所有Gaussians(叠加)的不透光率。显然 S ( p ) < 1 S(\mathbf p)<1 S(p)<1。当 S ( p ) ≠ 1 S(\mathbf p)\ne 1 S(p)=1时,背景颜色将会对像素颜色有贡献。但是一个完全重建的场景不应该体现出背景颜色,故 S ( p ) S(\mathbf p) S(p)是否接近 1 1 1可以判断该像素点所对光线上的Gaussian重建程度,进而反映置信度。

值得注意的是,该方法中仅用RGB三个数表示Gaussian的颜色(不考虑从不同方向观察Gaussian颜色不同的问题),仅用一个半径 r r r表示Gaussian的尺度(即各向同性的)。

1. 初始化(Initialization)

第一帧不进行相机追踪,把RT矩阵设置为单位阵。第一帧的所有像素都用来初始化Gaussians。对于每个像素,新增一个颜色为该像素颜色、不透明度为 0.5 0.5 0.5、中心深度为该像素的深度值、半径满足投影到图像上的半径为一像素的Gaussian。换言之,Gaussian的半径等于 r = D f r=\frac{D}{f} r=fD,其中 D D D f f f分别为深度和焦距。

2. 相机追踪(Tracking)

t + 1 t+1 t+1帧,相机的位姿被初始化为第 t t t帧的位姿+一个恒定的速度,例如 E t + 1 = E t + ( E t − E t − 1 ) E_{t+1}=E_t+(E_t-E_{t-1}) Et+1=Et+(EtEt1)其中 E t E_t Et是第 t t t帧相机的位置坐标和旋转四元数。然后相机的位姿会经过梯度下降优化,目标函数为 L t = ∑ ∀ pixel  p [ S ( p ) > 0.99 ] [ L 1 ( D ( p ) ) + 0.5 L 1 ( C ( p ) ) ] L_t=\sum\limits_{\forall\text{pixel }\mathbf p} [S(\mathbf p)>0.99] [L_1(D(\mathbf p))+0.5L_1(C(\mathbf p))] Lt=pixel p[S(p)>0.99][L1(D(p))+0.5L1(C(p))]其中 L 1 L_1 L1代表 L 1 loss L_1\text{ loss} L1 loss D ( p ) D(\mathbf p) D(p) C ( p ) C(\mathbf p) C(p)分别代表像素 p \mathbf p p的深度和颜色。 0.5 0.5 0.5是颜色误差的权重(类似于论文[1]中的 λ p h o \lambda_{pho} λpho)。一个很重要的点是loss只计算 S ( p ) S(\mathbf p) S(p)较高的像素,因为这部分的重建已经是较完善的了。如果某一点的深度信息不存在,则 L 1 loss L_1\text{ loss} L1 loss返回 0 0 0

3. 高斯致密化(Gaussian Densification)

每一帧都会在重建不完全的地方插入新的Gaussians。该方法定义了以下“致密化掩码”来确定应该在哪里插入新Gaussians(其中的乘法和加法应理解为与和或):
也就是说会在两种情况下新增Gaussian:像素 p \mathbf p p处的 S S S值太小(后面的背景都露出来了),或者此处由Gaussians给出的预测深度 D D D小于真实深度 D G T D_{\mathrm{GT}} DGT且深度的 L 1 L_1 L1误差大于 λ \lambda λ(设为 50 50 50)乘以深度中位数误差(Median Depth Error, MDE)。对每个像素,如果该掩码为真,则以与初始化相同的方式插入新Gaussians。

4. 高斯场景更新(Gaussian Map Updating)

该方法从最新重建结果开始优化。每 n n n帧选取一帧作为关键帧。该方法选取 k k k帧指导优化,包括当前帧,上一帧和 k − 2 k-2 k2个与当前帧有高度重叠的以前的关键帧。重叠的判别方式是取当前帧深度图的点云并检查多少个点在每一个关键帧的视锥中。

这部分优化的loss与相机追踪阶段类似,只不过该方法不用 S ( p ) S(\mathbf p) S(p)(silouette mask)了,因为该方法想利用所有像素进行优化。此外,该方法还为RGB渲染添加了一个SSIM loss,并移除不透明度接近 0 0 0或者体积太大的Gaussians,就像Gaussian Splatting原论文所做的那样。

GS原论文中的loss公式:

[3] Gaussian-SLAM

该论文处理的对象依然是真实世界单个相机拍摄的RGBD视频。该方法对好的深度数据有较高要求(见论文14页Limitations and Future Work)。

1. 子场景(Sub-map)

为了避免灾难性遗忘、过拟合和计算复杂度过高,该方法将输入分块处理,对应不同的子场景。当前的子场景被称为活动子场景(active sub-map)。在当前帧相对于活动子场景首帧的平移超过阈值 d t h r e d_{\rm thre} dthre或欧拉角超过阈值 θ t h r e \theta_{\rm thre} θthre时,就新建一个子场景作为活动子场景。任何时候,算法都只会处理活动子场景。

每5帧取一帧作为关键帧(见Experiments的Implementation Details)。每个关键帧都可能会添加新Gaussians。对于每个子场景的第一帧,算法在帧中颜色梯度较高的区域均匀地选取 M c M_c Mc个点。在随后的关键帧中,算法在渲染的 α \alpha α值低于一个阈值 α n \alpha_n αn的区域随机选取 M k M_k Mk个点。新Gaussian的中心位置是随机选取的点,但还要满足以下要求:在当前子场景、半径为 ρ \rho ρ的邻域内没有其他Gaussian。新Gaussian是各向异性的(即不是球体),它们的缩放参数取当前子场景内离它最近的Gaussian的距离。

算法不会复制或删除Gaussian。算法会渲染一个子场景内的所有关键帧来进行优化,并将40%的迭代次数用在新的关键帧上。

2. 形状和颜色编码(Geometry and Color Encoding)

该论文与[2]一样使用 L 1 L_1 L1范数定义深度误差 L d e p t h L_{\mathrm{depth}} Ldepth和颜色误差 L c o l o r L_{\mathrm{color}} Lcolor,并且也加入了SSIM loss(颜色的 L 1 L_1 L1误差与SSIM之间的权重比例为 4 : 1 4:1 4:1)。同时,该论文也与[1]类似使用了各向同性正则化来惩罚拉得太长的Gaussians: L r e g = ∑ k ∈ K ∣ s k − s ˉ k ∣ 1 ∣ K ∣ L_{\mathrm{reg}} = \cfrac{\sum\limits_{k\in K}|s_k-\bar s_k|_1}{|K|} Lreg=KkKsksˉk1其中 s k s_k sk是Gaussian的缩放参数, s ˉ k \bar s_k sˉk是子场景中所有Gaussian缩放参数的均值(这一点与论文[1]不同,[1]中 s ˉ k \bar s_k sˉk是单个Gaussian缩放的均值) k k k是该子场景中Gaussian的ID, ∣ K ∣ |K| K是子场景中Gaussian的个数。

该方法以下面的式子作为目标函数优化当前子场景的Gaussians:

3. 相机追踪(Tracking)

这部分优化的是第 i i i帧相机相对于第 i − 1 i-1 i1帧的相对位姿(relative camera pose)。相机外参的初始值也遵循[2]中的“恒定速度假设”,即当前帧、上一帧和上上一帧的外参呈等差数列(就平移向量和旋转四元数而言)。在优化这部分时,Gaussians的参数是冻结的。这部分的目标函数是
其中 M i n l i e r M_{\mathrm{inlier}} Minlier是两一个布尔掩码,用于排除一些重建不完全的像素,这些像素的深度误差大于当前重渲染深度图中深度误差中位数的 50 50 50倍; M a l p h a = α 3 M_{\mathrm{alpha}}=\alpha^3 Malpha=α3(称为soft alpha mask,其中 α \alpha α是渲染出来的 α \alpha α值,相当于[2]中的 S ( p ) S(\mathbf p) S(p)),用于排除对于光线透明度较高的像素。

[4] GS-SLAM

这篇论文是最早的(2023年11月),其核心是“RGB-D re-rendering”。论文提出的方法也依赖高质量的深度数据。

1. 自适应3D高斯扩张重建(Adaptive 3D Gaussian Expanding Mapping)

对于每个关键帧,算法更新并优化3D高斯场景。优化的目标是最小化深度和颜色的 L 1 L_1 L1误差。

自适应3D高斯扩张策略:对于RGB-D序列的第一帧,算法从分辨率为 H × W H\times W H×W的图片中随机选取一半像素并利用深度数据将像素点反投影(back-projecting)到三维空间去,并以这些3D位置初始化Gaussians的中心坐标,此时Gaussians的球谐度数设置为0,颜色(直流分量)设置为像素点的颜色。在第一帧,场景通过重投影误差进行优化。另一半的像素用于将大Gaussians分解成小Gaussians并且从不同方向复制它们,从而弥补缺失的细节。

增加Gaussians:在每个关键帧,新的Gaussians会在不可靠的像素的反投影上创建。判断像素点是否可靠的方法是:检查其累积不透明度 T T T(等于[2]中的 S p S_\mathbf p Sp)是否小于阈值 τ T \tau_T τT或重渲染深度 D ^ \hat D D^的误差 ∣ D − D ^ ∣ |D-\hat D| DD^是否大于 τ D \tau_D τD。这些不可靠的像素点主要就是新观察到的区域。

删除Gaussians:由于自适应方法是不稳定的,有的时候会出现浮游(floating)的Gaussians。为了解决这个问题,算法在新增Gaussians后会检查当前相机视锥内的所有可见Gaussians并大幅度地减小位置不在场景表面的Gaussians的不透明度。准确的说,算法检查每个Gaussian中心投影到像平面后对应像素点的真实深度,并比较Gaussian深度与真实深度:若二者之差大于阈值 γ \gamma γ,则给该Gaussian的不透明度乘以 η \eta η η < < 1 \eta<<1 η<<1)。

2. 相机追踪(Tracking)

该论文依然遵循[2]中的“恒定速度假设”对相机位姿进行初始化。相机位姿优化的目标函数是颜色误差(注意这里没有用到深度误差)。

由粗到细的相机追踪:为了解决重投影时伪影影响相机位姿估计的问题,论文提出了Coarse-to-Fine Camera Tracking。首先渲染一个长宽各为原来一半的粗粒度图像(像素点是随机选取的),并迭代优化相机位姿 T c T_c Tc次。再用目前得到的相机位姿进行全分辨率的细粒度重投影,并像删除Gaussians的方法一样排除深度不对劲的Gaussians的影响。最后用细粒度图像迭代优化位姿 T f T_f Tf次。注意算法只投影以前观察到的区域。

3. 关键帧选取

选取的标准有两个:

  • 图像可靠部分与总大小的比例;
  • 当前帧与最近关键帧的差异是否达到阈值 μ k \mu_k μk

4. Bundle Adjustment

这一阶段算法共同优化相机位姿和3D Gaussians的参数。在关键帧数据库中随机选取 K K K个关键帧用于优化,目标函数和三维重建阶段类似。前一半迭代只优化3D Gaussians,后一半同时优化Gaussians和相机位姿。目标函数如下:

二、方法的异同

共同点

  1. 整体框架相同。方法都包含基于梯度下降的相机位姿优化、用3D Gaussians集合表示场景、动态增删Gaussians的策略,并且都用到了关键帧的概念;都在loss中引入了颜色误差和深度误差。
  2. 均简化了球谐(spherical harmonics)的表示(目的是提升速度)。[1][2][3]直接省略了球谐,用RGB值表示Gaussian的颜色。[4]用最大度数为 1 1 1的球谐,使得表示颜色的系数共有 12 12 12个。
  3. 深度和颜色误差均采用 L 1 L_1 L1范数;[2][3]均在计算颜色误差时引入了SSIM loss。
  4. [1][2][3]均注重Gaussian的各向同性(即趋近于球形,不能拉得太长)。其中[2]直接强制使用球形Gaussians,并进行了消融实验:如果采用各向异性的Gaussians,那么性能有可以忽略不计的提升,但时间和内存占用大幅升高(见[2]附录的S3)。[1][3]对控制Gaussian各向同性的loss做了消融实验,实验证明对于真实世界的数据这种loss可以显著优化场景并提高相机追踪的精度。
  5. [2][3][4]均以重建是否完全作为相机追踪和Gaussian新增的判断标准。[2]引入了“silhouette image” S ( p ) S(\mathbf p) S(p)来判断哪些像素参与相机追踪并辅助选取新Gaussian插入的位置。[3]引入了掩码 M i n l i e r M_{\mathrm{inlier}} Minlier M a l p h a M_{\mathrm{alpha}} Malpha分别从深度误差和不透明度的角度选取参与相机追踪的像素点;[4]用深度误差决定增删哪些Gaussians并判断哪些Gaussians在相机追踪时不予考虑(其中增加Gaussians时还考虑了不透明度是否小于一个阈值)。
  6. 在优化Gaussians均选取少量关键帧参与颜色误差的计算。[1]中用的是当前的关键帧窗口和随机选取的以往的两帧。[2]中用的是当前帧,上一帧和一些与当前帧有高度重叠的以前的关键帧。[3]中用的是当前子场景的所有关键帧。[4]中用的是随机选取的 K K K个关键帧。
  7. [1][2][4]中,新增Gaussian的深度均以图片像素反投影到三维空间中的深度为参考;其中[2][4]新增Gaussians的颜色为像素颜色。
  8. 文章的弱点相近。[2][3][4]均要求高质量的深度数据;四篇论文对轨迹偏移、移动模糊、突然旋转等极端场景效果均不好。

不同点

  1. 仅[1]可以处理不含深度的数据。
  2. 关键帧选取的策略不同。[1]的选取策略注重当前帧与上一个关键帧共同可见Gaussian的比例;[2][3]每隔固定的帧数(分别为 n n n、5)选一帧作为关键帧;[4]的选取依据是图像可靠部分的比例和当前帧与上一关键帧的差异。
  3. Gaussian增删的策略不同。[1][2][4]都围绕某些像素点的反投影创建像素,区别在于:[1]以一个围绕深度的正态分布插入Gaussians,删除在最近几帧无法观察到的Gaussians;[2]在满足致密化掩码条件的像素的反投影上创建新Gaussians,删除不透明度接近 0 0 0或体积过大的Gaussians;[4]在不透明度较小以及深度误差过大的像素的反投影创建Gaussians,并降低浮游Gaussians的不透明度。[3]则随机选点,并在比较“空”的位置创建新Gaussians。[3]不删除Gaussians。
  4. [1][4]共同优化相机位姿和Gaussians(即“bundle adjustment”);[2][3]分别优化位姿和Gaussians,优化其中一个的时候固定另一个。
  5. 只有[3]将输入序列分为多个子场景。当要完成时,[3]的算法会把所有子场景合并起来,方法是检查最近邻居,与子场景构建类似。最后的最后会执行一个颜色优化,迭代10000次。

三、性能对比

1. 相机追踪精度

指标为ATE (Absolute Trajectory Error) RMSE (Root Mean Square Error) (cm)。

论文\数据集(平均)TUM-RGBDReplica
[1] Gaussian Splatting SLAM1.580.79
[2] SplaTAM3.250.36
[3] Gaussian SLAM2.90.31
[4] GS-SLAM3.70.5

可以看到[1]在TUM-RGBD数据集上效果最好,[3]在Replica上效果最好。

注意:TUM-RGBD数据集的平均数我只统计了fr1/desk、fr2/xyz、fr3/office三个场景,与[2]中计算的平均数不同([2]中还统计了其他场景,但这些场景在其他论文中没有出现)。

2. 重渲染精度

下表是各方法在Replica数据集上的渲染精度:

论文\度量PSNR[dB] ↑ \uparrow SSIM ↑ \uparrow LPIPS ↓ \downarrow
[1] Gaussian Splatting SLAM34.830.9540.068
[2] SplaTAM34.110.970.10
[3] Gaussian SLAM38.880.9930.017
[4] GS-SLAM31.560.9680.094

可以看出[3]全面超越其他方法。

3. 训练和渲染FPS

论文\指标训练FPS渲染FPS
[1] Gaussian Splatting SLAM (RTX 4090)3.2(TUM单目相机数据集的fr3/office场景)769(Replica)
[2] SplaTAM (RTX 3080)0.42175
[3] Gaussian SLAM (RTX A6000)0.572175
[4] GS-SLAM8.34(Replica数据集中的Room 0场景)386

附录

文章局限性

[1] Gaussian Splatting SLAM

[2] SplaTAM

[3] Gaussian-SLAM

[4] GS-SLAM

迭代次数

[1] Gaussian Splatting SLAM:每帧进行100次相机追踪迭代,当更新值小于 1 0 − 4 10^{-4} 104时提前停止。场景重建的迭代次数是150次每帧。

[2] SplaTAM:每帧的追踪和重建迭代次数分别为40和60。

[3] Gaussian-SLAM:对每个子场景的首帧,在Replica、TUM-RGBD、ScanNet数据集的重建迭代次数分别为1000、100和500。此后每帧迭代100次,与数据集无关。在合并场景后的颜色优化环节,算法迭代10000次。

[4] GS-SLAM:对于Replica数据集迭代次数为10次追踪、100次重建;对TUM-RGBD数据集追踪迭代次数为30。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296393.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第二十一章 RabbitMQ

一、RabbitMQ 介绍 在介绍 RabbitMQ 之前&#xff0c;我们先来看下面一个电商项目的场景&#xff1a; - 商品的原始数据保存在数据库中&#xff0c;增删改查都在数据库中完成。 - 搜索服务数据来源是索引库&#xff08;Elasticsearch&#xff09;&#xff0c;如果数据库商品…

【VUE+ElementUI】el-table表格固定列el-table__fixed导致滚动条无法拖动

【VUEElementUI】el-table表格固定列el-table__fixed导致滚动条无法拖动 背景 当设置了几个固定列之后&#xff0c;表格无数据时&#xff0c;点击左侧滚动条却被遮挡&#xff0c;原因是el-table__fixed过高导致的 解决 在index.scss中直接加入以下代码即可 /* 设置默认高…

vue快速入门(四)v-html

注释很详细&#xff0c;直接上代码 上一篇 新增内容 使用v-html将文本以html的方式显示 源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, …

PS从入门到精通视频各类教程整理全集,包含素材、作业等(7)

PS从入门到精通视频各类教程整理全集&#xff0c;包含素材、作业等 最新PS以及插件合集&#xff0c;可在我以往文章中找到 由于阿里云盘有分享次受限制和文件大小限制&#xff0c;今天先分享到这里&#xff0c;后续持续更新 PS敬伟01——90集等文件 https://www.alipan.com/s…

Vue ElementPlus Input 输入框

Input 输入框 通过鼠标或键盘输入字符 input 为受控组件&#xff0c;它总会显示 Vue 绑定值。 通常情况下&#xff0c;应当处理 input 事件&#xff0c;并更新组件的绑定值&#xff08;或使用v-model&#xff09;。否则&#xff0c;输入框内显示的值将不会改变&#xff0c;不支…

【环境变量】命令行参数 | 概念 | 理解 | 命令行参数表 | bash进程

目录 四组概念 命令行参数概念&理解 查看命令函参数 命令行字符串&命令行参数表 命令行参数存在的意义 谁形成的命令行参数 父进程&子进程&数据段 bash进程 最近有点小忙&#xff0c;可能更新比较慢。 四组概念 竞争性: 系统进程数目众多&#xff0c…

docker------docker入门

&#x1f388;个人主页&#xff1a;靓仔很忙i &#x1f4bb;B 站主页&#xff1a;&#x1f449;B站&#x1f448; &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;Linux &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#…

postgis 建立路径分析,使用arcmap处理路网数据,进行拓扑检查

在postgresql+postgis上面,对路网进行打断化简,提高路径规划成功率。 一、创建空间库以及空间索引 CREATE EXTENSION postgis; CREATE EXTENSION pgrouting; CREATE EXTENSION postgis_topology; CREATE EXTENSION fuzzystrmatch; CREATE EXTENSION postgis_tiger_geocoder;…

软件架构风格_4.虚拟机体系结构风格

虚拟机体系结构风格的基本思想是人为构建一个运行环境&#xff0c;在这个环境之上&#xff0c;可以解析与运行自定义的一些语言&#xff0c;这样来增加架构的灵活性。虚拟机体系结构风格主要包括解释器风格和规则系统风格。 1.解释器体系结构风格 一个解释器通常包括完成解释工…

正则表达式与JSON序列化:去除JavaScript对象中的下划线键名

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

鸿蒙南向开发实战:【智能窗帘】

样例简介 智能窗帘设备不仅接收数字管家应用下发的指令来控制窗帘开启的时间&#xff0c;而且还可以加入到数字管家的日程管理中。通过日程可以设定窗帘开关的时间段&#xff0c;使其在特定的时间段内&#xff0c;窗帘自动打开或者关闭&#xff1b;通过日程管家还可以实现窗帘…

算法练习—day1

title: 算法练习—day1 date: 2024-04-03 21:49:55 tags: 算法 categories:LeetCode typora-root-url: 算法练习—day1 网址&#xff1a;https://red568.github.io 704. 二分查找 题目&#xff1a; 题目分析&#xff1a; 左右指针分别为[left,right]&#xff0c;每次都取中…

上位机图像处理和嵌入式模块部署(qmacvisual亮度检测)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们说过&#xff0c;在机器视觉当中&#xff0c;对于光源的处理要非常小心。这里面不仅包括了选择什么样的光源&#xff0c;还取决于怎样使用…

javaWeb旅游网站设计

一、概述 1.1 项目研究背景 社会经济的发展和提高潜移默化的影响了人们对精神消费的日益看中与提高&#xff0c;所以越来越多的人们开始选择更健康有趣的生活活动&#xff0c;随之而来的旅游便成了人们消费的必选。随着旅客需求的日趋丰富和个性化&#xff0c;这势必将推动我…

搜索二叉树

目录 搜索二叉树的概念 二叉搜索树的遍历 二叉搜索树的模拟实现 Find查找函数 Insert插入函数 Erase删除函数 case 1&#xff1a; case 2&#xff1a; 待删除结点左孩子不存在&#xff0c;右孩子存在 待删除结点左孩子存在&#xff0c;右孩子不存在 case 3&#xff1a;…

easyExcel 模版导出 中间数据纵向延伸,并且对指定列进行合并

想要达到的效果 引入maven引用 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.2.1</version></dependency> 按照要求创建模版 备注 : 模板注意 用{} 来表示你要用的变量 如果本…

C#使用Selenium驱动Chrome浏览器

1.Selenium库依赖安装 Selenium WebDriver是Selenium项目的一部分&#xff0c;用于模拟用户在Web应用程序中的交互操作。它支持多种浏览器&#xff0c;如Chrome、Firefox、IE等&#xff0c;且与各种编程语言&#xff08;如Java、Python、C#等&#xff09;兼容&#xff0c;具有…

RUST语言流控制语句使用示例

1.判断语句 单条件判断: let mut x128;//声明一个32位整数x512;//修改变量原来的值为新值//如果 ... 否则//判断变量x是否大于256if x>256 {println!("x>256,x{}",x);}else {println!("x<256,x{}",x);}let is_ok:bool true;//rust中不用()if i…

pytest--python的一种测试框架--接口测试

接口测试 工具&#xff1a; POSTMAN&#xff1b; 接口选择&#xff1a; 豆瓣电影&#xff0c;进制数据 POSTMAN下载&#xff1a; 1.POSTMAN官网&#xff1a;https://www.postman.com/products/&#xff1b; 2.点product选Download Postman 下载完之后双击打开就可以用的。…

【TI毫米波雷达】IWR6843AOP的官方文件资源名称BUG,选择xwr68xx还是xwr64xx,及需要注意的问题

【TI毫米波雷达】IWR6843AOP的官方文件资源名称BUG&#xff0c;选择xwr68xx还是xwr64xx&#xff0c;及需要注意的问题 文章目录 demo工程out_of_box文件调试bin文件名称需要注意的问题附录&#xff1a;结构框架雷达基本原理叙述雷达天线排列位置芯片框架Demo工程功能CCS工程导…