运筹学经典问题(八):CVRP和VRP-TW

文章目录

  • 问题描述
  • 问题建模
    • 决策变量
    • 数学建模
    • 基于容量的消除子环的约束 (load-based SECs)
  • CVRP完整的数学模型
  • 加上时间窗限制的CVRP

问题描述

给定一个图,图上的点代表客户,边代表客户之间的路线,边的权重代表客户之间的距离,点上的数字代表每个用户的需求量。
在这里插入图片描述

数学符号表示如下:

在这里插入图片描述

本文讨论的问题背景:

  • 用户需求已知,且被一辆车满足(不要拆开);
  • m m m辆车,且有相同的最大载量 L L L
  • 路网络是对称的(往返距离一样,不考虑上下坡之类的问题);
  • 要么取货要么送货;
  • 1个仓库,而且车的路线 T T T要是闭环的(最后要回到仓库);
  • 只考虑1个规划周期;
  • 目标是最小化车辆的行驶距离
  • 点0代表仓库。

问题建模

决策变量

在这里插入图片描述

数学建模

疑问:这种建模方式怎么知道每辆车的路线?
会有图上的哪些边被选中,形成 m m m个环,就知道啦!

目标函数:最小化行驶距离

m a x ∑ i , j ∈ V , i ≠ j x i j ∗ c i j max \sum_{i,j \in V, i \neq j}x_{ij}*c_{ij} maxi,jV,i=jxijcij

约束1:车辆从每个客户出发一次

∑ j ∈ V , i ≠ j x i j = 1 , ∀ i ∈ V − { 0 } \sum_{j \in V, i \neq j}x_{ij} = 1, \forall i \in V-\{0\} jV,i=jxij=1,iV{0}

约束2:车辆进入每个客户一次

∑ j ∈ V , i ≠ j x j i = 1 , ∀ i ∈ V − { 0 } \sum_{j \in V, i \neq j}x_{ji} = 1, \forall i \in V-\{0\} jV,i=jxji=1,iV{0}

约束3:最多用 m m m辆车

∑ j ∈ V − { 0 } x 0 j ≤ m \sum_{j \in V-\{0\}}x_{0j} \leq m jV{0}x0jm

如果只是上面的模型,可能会出现下图这种解,右下角这个环没有包含仓库!因此,我们需要一个约束去消除这种不包含仓库的子环。此外,上面的约束也没有约束车辆的容量限制!这也是VRP建模的一个略难的约束。
在这里插入图片描述

基于容量的消除子环的约束 (load-based SECs)

学术上称为Sub-tour-elimination constraints (SECs),该约束需要保证:

1. 每个环路不超过车辆最大容量;
2. 每个环路都包含仓库。

新引入一个变量:
u i u_i ui: 假设我们的问题是车辆去客户那里取货, u i u_i ui表示车辆到达客户点 i i i时的载量, ∀ i ∈ V \forall i \in V iV

因此有如下约束:

如果我们选择了 ( i , j ) (i, j) (i,j)这条连边,那么车辆到达客户 i i i时的容量,加上用户 i i i寄货的重量,要为车辆到达客户 j j j时的容量。逻辑上是相等的,但是我理解是为了刻画这个等式的成立是基于 ( i , j ) (i, j) (i,j)这条连边被选择,所以描述成了下面的 ≤ \leq 的形式。

u i + b i ≤ u j + ( 1 − x i j ) L , ∀ i , j ∈ V − 0 , i ≠ j u_i + b_i \leq u_j + (1-x_{ij})L, \forall i,j \in V -{0},i \neq j ui+biuj+(1xij)L,i,jV0,i=j

但是这个约束并没有刻画车辆的容量限制?

应该还要加一个:
u i ≤ L , ∀ i ∈ V u_i \leq L, \forall i \in V uiLiV

CVRP完整的数学模型

在这里插入图片描述

加上时间窗限制的CVRP

假设某些客户只想在特定时间段被服务,那么在上述问题的基础上,我们需要引入如下新的常量定义:
在这里插入图片描述

同时,我们需要引入一个新的决策变量:
a i a_i ai:到达客户 i i i时的时间, ∀ i ∈ V \forall i \in V iV

新增的约束包括:

1. 定义到达第一个客户的时间:

t 0 j x i j ≤ a j , ∀ j ∈ V t_{0j}x_{ij} \leq a_j, \forall j \in V t0jxijaj,jV

2. 约束两个连续访问的用户的时间:访问用户 i i i的时间+用户 i i i被服务的时间+从 i i i j j j的形式时间 = 访问用户 j j j的时间

a i + s i + t i j ≤ a j + ( 1 − x i j ) T , ∀ i , j ∈ V − 0 , i ≠ j a_i + s_i + t_{ij} \leq a_j + (1-x_{ij})T, \forall i,j \in V-0, i \neq j ai+si+tijaj+(1xij)Ti,jV0i=j

3. 约束每个用户被访问的时间在指定时间窗内:
w i s ≤ a i , ∀ i ∈ V − 0 w_i^s \leq a_i, \forall i \in V-0 wisai,iV0
a i + s i ≤ w i e , ∀ j ∈ V − 0 a_i + s_i \leq w_i^e, \forall j \in V-0 ai+siwie,jV0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/297472.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学透Spring Boot — 004. Spring Boot Starter机制和自动配置机制

如果你项目中一直用的是 Spring Boot,那么恭喜你没有经历过用 Spring 手动集成其它框架的痛苦。 都说 Spring Boot 大大简化了 Spring 框架开发 Web 应用的难度,这里我们通过配置 Hibernate 的两种方式来深刻体会这一点: 使用 Spring 框架集…

MySQL 导入库/建表时/出现乱码

问题描述: 新建不久的项目在使用Navicat for MySQL进行查看数据,发现表中注释的部分乱码,但是项目中获取的数据使用不会。 猜测因为是数据库编码和项目中使用的不一样,又因为项目的连接语句定义了需要编码,故项目运行…

基于向量数据库搭建自己的搜索引擎

前言【基于chatbot】 厌倦了商业搜索引擎搜索引擎没完没了的广告,很多时候,只是需要精准高效地检索信息,而不是和商业广告“斗智斗勇”。以前主要是借助爬虫工具,而随着技术的进步,现在有了更多更方便的解决方案&…

AcWing-游戏

1388. 游戏 - AcWing题库 所需知识:博弈论,区间dp 由于双方都采取最优的策略来取数字,所以结果为确定的,有可能会有多个不同的过程,但是我们只需要关注最终结果就行了。 方法一: 定义dp[i][j] 表示区间…

Loss【1】:Focal Loss

系列文章目录 文章目录 系列文章目录前言1. 什么是 Focal Loss2. 逐过程解析 Focal Loss3. Focal Loss 的 PyTorch 实现总结 前言 类别不平衡是一个在目标检测领域被广泛讨论的问题,因为目标数量的多少在数据集中能很直观的体现。同时,在分割中这也是一…

理解pytorch的广播语义

目录 什么是广播运算 广播的条件 示例 示例1 示例2 示例3 补1 示例4 原位运算 示例5 参与广播运算的两个tensor,必须是从右向左对齐 总结规律 两个tensor可以做广播运算的条件: 两个可以互相广播的tensor运算的步骤: 例子&#x…

[C#]OpenCvSharp改变图像的对比度和亮度

目的 访问像素值mat.At<T>(y,x) 用0初始化矩阵Mat.Zeros 饱和操作SaturateCast.ToByte 亮度和对比度调整 g(x)αf(x)β 用α(>0)和β一般称作增益(gain)和偏置(bias)&#xff0c;分别控制对比度和亮度 把f(x)看成源图像像素&#xff0c;把g(x)看成输出图像像素…

蓝桥杯—DS1302

目录 1.管脚 2.时序&官方提供的读写函数 3.如何使用读写函数 4.如何在数码管中显示在DS1302中读取出的数据&#xff1f; 1.管脚 2.时序&官方提供的读写函数 /* # DS1302代码片段说明1. 本文件夹中提供的驱动代码供参赛选手完成程序设计参考。2. 参赛选手可以自行…

如何锁定鼠标光标在水平、垂直或45度对角线模式下移动 - 鼠标水平垂直移动锁定器简易教程

在我们进行精细工作例如如创建图标和图形设计时&#xff0c;通常需要我们对鼠标移动进行精确控制。一旦向左或向右轻微移动&#xff0c;都可能导致设计出错。若出现不必要的错误&#xff0c;我们极有可能不得不重新开始&#xff0c;这会令人感到非常沮丧。这种情况下&#xff0…

RabbitMQ3.x之九_Docker中安装RabbitMQ

RabbitMQ3.x之_Docker中安装RabbitMQ 文章目录 RabbitMQ3.x之_Docker中安装RabbitMQ1. 官网2. 安装1 .拉取镜像2. 运行容器 3. 访问 1. 官网 rabbitmq - Official Image | Docker Hub 2. 安装 1 .拉取镜像 docker pull rabbitmq:3.13.0-management2. 运行容器 # latest Rabb…

单元测试 mockito(二)

1.返回指定值 2.void返回值指定插桩 3.插桩的两种方式 when(obj.someMethod()).thenXxx():其中obj可以是mock对象 doXxx().wien(obj).someMethod():其中obj可以是mock/spy对象 spy对象在没有插桩时是调用真实方法的,写在when中会导致先执行一次原方法,达不到mock的目的&#x…

模块化编程:AMD 和 CMD 的魅力

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

2024 年最新使用 Wechaty 开源框架搭建部署微信机器人(微信群智能客服案例)

读取联系人信息 获取当前机器人账号全部联系人信息 bot.on(ready, async () > {console.log("机器人准备完毕&#xff01;&#xff01;&#xff01;")let contactList await bot.Contact.findAll()for (let index 0; index < contactList.length; index) {…

RabbitMQ Tutorial

参考API : Overview (RabbitMQ Java Client 5.20.0 API) 参考文档: RabbitMQ: One broker to queue them all | RabbitMQ 目录 结构 Hello World consumer producer 创建连接API解析 创建连接工厂 生产者生产消息 消费者消费消息 队列声明 工作队列Work Queues 公平…

gpt国内怎么用?最新版本来了

claude 3 opus面世后&#xff0c;这几天已经有许多应用&#xff0c;而其精确以及从不偷懒&#xff08;截止到2024年3月11日还没有偷懒&#xff09;的个性&#xff0c;也使得我们可以用它来首次完成各种需要多轮对话的尝试。 今天我们想要进行的一项尝试就是—— 如何从一个不知…

Outlook会议邀请邮件在答复后就不见了

时常会有同事找到我说&#xff0c;Outlook答复会议邀请邮件后收件箱就找不到会议邀请的邮件了。 这其实是Outlook的的一个机制&#xff0c;会把应答后的会议邀请邮件从收件箱自动删除&#xff0c;到已删除的邮件那里就能找到。如果不想要自动删除&#xff0c;改一个设置即可。…

LeetCode-124. 二叉树中的最大路径和【树 深度优先搜索 动态规划 二叉树】

LeetCode-124. 二叉树中的最大路径和【树 深度优先搜索 动态规划 二叉树】 题目描述&#xff1a;解题思路一&#xff1a;递归。return max(max(l_val, r_val) node.val, 0)解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1a; 二叉树中的 路径 被定义为一条…

iOS-App:App Store新的审核政策,在应用隐私清单中声明和解释使用特定API的原因

App Store新的审核政策&#xff0c;在应用隐私清单中声明和解释使用特定API的原因 设备/引擎&#xff1a;Mac&#xff08;11.6&#xff09;/Mac Mini 开发工具&#xff1a;终端 开发需求&#xff1a;苹果官方邮件通知&#xff0c; App Store新的审核政策&#xff0c;在应用隐…

面试总结------2024/04/04

1.面试官提问&#xff1a;你说你在项目中使用springsecurity jwt 实现了登录功能&#xff0c;能简单讲一下怎么实现的吗&#xff1f; 2.使用RabbitMQ实现订单超时取消功能 订单状态定义 首先&#xff0c;我们需要定义订单的不同状态。在这个示例中&#xff0c;我们可以定义以下…

Unity:2D SpriteShape

1.1 简介 Sprite Shape 可以很灵活的更改sprite的轮廓。比如&#xff1a; 它由两部分组成&#xff1a;Sprite Shape Profile、Sprite Shape Controller&#xff0c;需要导入2D Sprite Shape Package. 1.1.1 Sprite导入要求 Texture Type - ‘Sprite (2D and UI)’.Sprite Mo…