[C#]OpenCvSharp使用帧差法或者三帧差法检测移动物体

关于C++版本帧差法可以参考博客

[C++]OpenCV基于帧差法的运动检测-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/FL1768317420/article/details/137397811?spm=1001.2014.3001.5501

我们将参考C++版本转成opencvsharp版本。

帧差法,也叫做帧间差分法,这里引用百度百科上的一段定义:

帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,判断它是否大于阈值来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。图像序列逐帧的差分,相当于对图像序列进行了时域下的高通滤波。

最简单的帧差法就是二帧差分法,将视频流中的前后两帧图像转换为灰度图像,再经过高斯模糊消除噪声干扰,然后将两帧图像进行相减操作得到两帧图像之间的差异区域,再对差异图像进行二值分割把差异区域作为前景、不变区域作为背景,并且进行开运算操作来消除一些微小干扰。这样,就得到了两帧图像中明显不同的区域,也就是运动的目标物体。下面对上述博客C++版本做解读:

这段C++ OpenCV代码实现了一个简单的运动检测算法,采用两帧差法来识别视频中的运动区域。以下是代码逐段解读:1. 初始化视频捕获器VideoCapture capture;
capture.open("D:\\opencv_c++\\opencv_tutorial\\data\\images\\bike.avi");
这段代码创建了一个VideoCapture对象capture,用于打开和读取视频文件。这里尝试打开位于指定路径的bike.avi视频文件。2. 检查视频是否成功打开if (!capture.isOpened())
{return 0;
}
使用capture.isOpened()检查视频文件是否成功打开。如果未能成功打开(返回false),则立即结束程序并返回值0。3. 定义所需图像变量Mat pre_frame, current_frame, pre_gray, current_gray, pre_gaus, current_gaus;
定义一系列Mat对象(OpenCV中的多通道图像容器),用于存储不同处理阶段的图像数据:pre_frame 和 current_frame 分别存储前一帧和当前帧的彩色图像。
pre_gray 和 current_gray 存储对应的灰度图像。
pre_gaus 和 current_gaus 存储经过高斯模糊处理的灰度图像。
4. 读取第一帧并进行预处理capture.read(pre_frame);
cvtColor(pre_frame, pre_gray, COLOR_BGR2GRAY);
GaussianBlur(pre_gray, pre_gaus, Size(), 5, 5);
首先从视频中读取第一帧到pre_frame。接着,使用cvtColor函数将其转换为灰度图像并存储在pre_gray中。最后,对pre_gray应用高斯模糊(核大小为5x5),结果存放在pre_gaus。5. 循环处理后续帧while (capture.read(current_frame))
{// ... 处理代码 ...
}
进入主循环,每次迭代从视频中读取下一帧至current_frame。当无法再读取到新帧时(即视频播放完毕),循环结束。6. 当前帧预处理cvtColor(current_frame, current_gray, COLOR_BGR2GRAY);
GaussianBlur(current_gray, current_gaus, Size(), 5, 5);
对当前帧执行与第一帧相同的预处理步骤:转换为灰度图像(current_gray)并应用高斯模糊(current_gaus)。7. 计算两帧差分Mat sub_gray, sub_binary, sub_open;
subtract(current_gaus, pre_gaus, sub_gray);
threshold(sub_gray, sub_binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
计算current_gaus与pre_gaus之间的像素差值,结果存储在sub_gray。然后,对sub_gray应用二值化阈值处理(包括Otsu自适应阈值),得到运动区域的二值图像sub_binary。8. 形态学开运算Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
morphologyEx(sub_binary, sub_open, MORPH_OPEN, kernel, Point(-1, -1), 1, 0);
创建一个大小为5x5的矩形结构元素kernel。接着,对sub_binary进行形态学开运算(去除小噪声),输出结果保存在sub_open。9. 显示结果imshow("sub_open", sub_open);
imshow("current_frame", current_frame);
使用imshow函数分别显示运动区域检测结果sub_open和当前帧原始彩色图像current_frame。10. 更新前一帧信息cpp
swap(pre_gaus, current_gaus);
使用swap函数交换pre_gaus和current_gaus的内容,使得pre_gaus存储当前帧高斯模糊后的灰度图像,为下一次循环做好准备。11. 检查用户输入以决定是否退出char ch = cv::waitKey(20);
if (ch == 27)
{break;
}
waitKey(20)函数等待用户按键,同时设置超时时间为20毫秒。若在该时间内接收到按键事件,返回按键的ASCII码;否则返回-1。这里检查是否按下Esc键(ASCII码为27),如果是,则跳出循环,结束视频处理。综上所述,这段代码实现了基于两帧差法的运动检测算法,通过对连续视频帧进行灰度化、高斯模糊、差分、二值化、形态学开运算等步骤,提取出运动区域并在窗口中实时显示,同时允许用户按Esc键随时停止处理。

三帧差分法是将连续的三帧图像,分别进行转灰度图、高斯模糊消除噪声干扰,然后进行逐帧相减,也就是后一帧图像减去当前帧图像、当前帧图像减去前一帧图像,从而得到两张差异图像。再将得到的两个差值图像进行与操作,得到共同的差异区域,最后通过开运算操作消除微小干扰。这样就得到了三帧图像间的明显差异区域,也就是运动的目标物体。

而且二帧差分法对于微小运动物体的检测能力比较差,因为如果在两帧图像之间变化太小,就很难被检测出来。而三帧差分法利用连续三帧图像的差异结果,能够提高对微小运动物体的检测能力,同时增强对噪声、光照等因素的抗干扰能力。以下是对C++代码解读:

这段C++ OpenCV代码同样实现了一个基于两帧差法的运动检测算法,但与之前提供的代码相比,它采用了双缓冲机制,即同时保留两前一帧的信息,以增强对运动检测的稳定性。以下是详细解读:1. 初始化视频捕获器cpp
VideoCapture capture;
capture.open("D:\\opencv_c++\\opencv_tutorial\\data\\images\\bike.avi");
创建一个VideoCapture对象capture,用于打开并读取视频文件。这里尝试打开位于指定路径的bike.avi视频文件。2. 检查视频是否成功打开cpp
if (!capture.isOpened())
{return 0;
}
使用capture.isOpened()检查视频文件是否成功打开。如果未能成功打开(返回false),则立即结束程序并返回值0。3. 定义所需图像变量cpp
Mat pre_frame1, pre_frame2, current_frame,pre_gray1, pre_gray2, current_gray,pre_gaus1, pre_gaus2, current_gaus;
定义一系列Mat对象,用于存储不同处理阶段的图像数据:pre_frame1 和 pre_frame2 分别存储最近两帧的彩色图像。
current_frame 存储当前帧的彩色图像。
pre_gray1 和 pre_gray2 存储对应的灰度图像。
current_gray 存储当前帧的灰度图像。
pre_gaus1 和 pre_gaus2 存储最近两帧经过高斯模糊处理的灰度图像。
current_gaus 存储当前帧经过高斯模糊处理的灰度图像。
4. 读取前两帧并进行预处理cpp
capture.read(pre_frame1);
capture.read(pre_frame2);cvtColor(pre_frame1, pre_gray1, COLOR_BGR2GRAY);
cvtColor(pre_frame2, pre_gray2, COLOR_BGR2GRAY);GaussianBlur(pre_gray1, pre_gaus1, Size(), 10, 0);
GaussianBlur(pre_gray2, pre_gaus2, Size(), 10, 0);
从视频中读取前两帧分别存入pre_frame1和pre_frame2。对这两帧进行灰度化处理后分别存储在pre_gray1和pre_gray2,接着对灰度图像应用高斯模糊(核大小为10x10),结果分别存放在pre_gaus1和pre_gaus2。5. 主循环处理后续帧cpp
while (capture.read(current_frame))
{// ... 处理代码 ...
}
进入主循环,每次迭代从视频中读取下一帧至current_frame。当无法再读取到新帧时(即视频播放完毕),循环结束。6. 当前帧预处理cpp
cvtColor(current_frame, current_gray, COLOR_BGR2GRAY);
GaussianBlur(current_gray, current_gaus, Size(), 10, 0);
对当前帧执行与前两帧相同的预处理步骤:转换为灰度图像(current_gray)并应用高斯模糊(current_gaus)。7. 计算两帧差分cpp
Mat diff1, diff2, diff;subtract(pre_gaus2, pre_gaus1, diff1);
subtract(current_gaus, pre_gaus2, diff2);
计算pre_gaus2与pre_gaus1以及current_gaus与pre_gaus2之间的像素差值,结果分别存储在diff1和diff2。8. 差分图像二值化cpp
Mat diff1_binary, diff2_binary;threshold(diff1, diff1_binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
threshold(diff2, diff2_binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
对diff1和diff2分别应用二值化阈值处理(包括Otsu自适应阈值),得到运动区域的二值图像diff1_binary和diff2_binary。9. 逻辑与操作合并差分结果cpp
bitwise_and(diff1_binary, diff2_binary, diff);
对diff1_binary和diff2_binary进行逻辑与(AND)操作,仅保留两者都为运动区域的像素,生成更稳定的运动检测结果,存储在diff中。10. 形态学开运算cpp
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
morphologyEx(diff, diff, MORPH_OPEN, kernel, Point(-1, -1), 1, 0);
创建一个大小为3x3的矩形结构元素kernel。接着,对diff进行形态学开运算(去除小噪声),输出结果仍保存在diff。11. 显示结果cpp
imshow("diff", diff);
imshow("current_frame", current_frame);
使用imshow函数分别显示运动区域检测结果diff和当前帧原始彩色图像current_frame。12. 更新前两帧信息cpp
pre_gaus1 = pre_gaus2.clone();
pre_gaus2 = current_gaus.clone();
使用clone函数复制pre_gaus2和current_gaus的内容,使得pre_gaus1和pre_gaus2分别存储前两帧高斯模糊后的灰度图像,为下一次循环做好准备。13. 检查用户输入以决定是否退出cpp
char ch = cv::waitKey(20);
if (ch == 27)
{break;
}
waitKey(20)函数等待用户按键,同时设置超时时间为20毫秒。若在该时间内接收到按键事件,返回按键的ASCII码;否则返回-1。这里检查是否按下Esc键(ASCII码为27),如果是,则跳出循环,结束视频处理。总结:这段代码通过双缓冲机制(同时保留两前一帧信息)实现了一种改进的基于两帧差法的运动检测算法。算法流程包括读取帧、预处理、差分计算、二值化、逻辑与操作、形态学开运算等步骤,最终提取出稳定运动区域并在窗口中实时显示,同时允许用户按Esc键随时停止处理。

知道上面步骤我们可以很轻松翻译成opencvsharp代码

【效果展示】

【测试环境】

vs2019,netframework4.7.2,opencvsharp4.8.0

【opencvsharp演示代码下载地址】 

https://download.csdn.net/download/FL1623863129/89085049

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/298509.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】线程概念及线程互斥

目录 线程概念 线程优点 线程缺点 线程异常 线程系统编程接口 线程创建及终止 线程等待 使用线程系统接口封装一个小型的C线程库并实现一个抢票逻辑 线程互斥 互斥量的接口 线程互斥实现原理 使用系统加锁接口封装LockGuard 实现自动化加锁 线程安全和可重入函数 …

前端与后端协同:实现Excel导入导出功能

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

c# wpf template itemtemplate+dataGrid

1.概要 2.代码 <Window x:Class"WpfApp2.Window8"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expression/blend…

解析Apache Kafka:在大数据体系中的基本概念和核心组件

关联阅读博客文章&#xff1a;探讨在大数据体系中API的通信机制与工作原理 关联阅读博客文章&#xff1a;深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章&#xff1a;深度剖析&#xff1a;计算机集群在大数据体系中的关键角色和技术要点 关联阅读博客文章&a…

图像处理入门 3(how to get the pixel pitch / 如何获得单个像素的尺寸)

在这里一节里面&#xff0c;将记录如何获得一个相机传感器中单个像素点的尺寸&#xff0c;为了实现不同相机照片之间的匹配。 如果我们知道了相机传感器的尺寸和分辨率的大小&#xff0c;自然就可以求出单个像素的大小。 在这里插入图片描述&#xff1a; 如何获得相机传感器的…

【GEE实践应用】GEE下载遥感数据以及下载后在ArcGIS中的常见显示问题处理(以下载哨兵2号数据为例)

本期内容我们使用GEE进行遥感数据的下载&#xff0c;使用的相关代码如下所示&#xff0c;其中table是我们提前导入的下载遥感数据的研究区域的矢量边界数据。 var district table;var dsize district.size(); print(dsize);var district_geometry district.geometry();Map.…

Linux制作C++静态库和动态库并使用示例

创建动态库&#xff1a; 编写源文件&#xff1a; // sub.h 显式调用 #include <iostream>extern "C" int sub(int a, int b);// sub.cpp #include "sub.h"int sub(int a, int b) {return a - b; }// quadrature.h 隐式调用 #include <iostream&…

视频分块上传Vue3+SpringBoot3+Minio

文章目录 一、简化演示分块上传、合并分块断点续传秒传 二、更详细的逻辑和细节问题可能存在的隐患 三、代码示例前端代码后端代码 一、简化演示 分块上传、合并分块 前端将完整的视频文件分割成多份文件块&#xff0c;依次上传到后端&#xff0c;后端将其保存到文件系统。前…

6、【单例模式】确保了一个类在程序运行期间只有一个实例

你好&#xff0c;我是程序员雪球 在软件设计中&#xff0c;单例模式是一种常见的设计模式。它确保了一个类在程序运行期间只有一个实例&#xff0c;并提供了全局访问该实例的方式。单例模式在许多场景中都有广泛的应用&#xff0c;例如共享资源管理、数据库连接、日志记录器等…

多线程3

线程安全 线程可能会出现这些情况 导致两个线程不能达到自己想要去循环的次数&#xff0c;可能两个线程各10000&#xff0c;那么他们就会出现不到5000甚至不到5000的情况。 出现线程的不安全原因&#xff1a; 1.线程在系统中是随机调度,抢占式执行的.[线程不安全的, 罪魁祸首…

考研回忆录【二本->211】

备考时长差不多快一年半&#xff0c;从22年的11月底开始陆陆续续地准备考研&#xff0c;因为开始的早所以整个备考过程显得压力不是很大&#xff0c;中途还去一些地方旅游&#xff0c;我不喜欢把自己绷得太紧。虽然考的不是很好&#xff0c;考完我甚至都没准备复试&#xff0c;…

【软件工程】详细设计(一)

1. 引言 1.1 编写目的 该文档的目的是描述《学生成绩管理系统》项目的详细设计&#xff0c;其主要内容包括&#xff1a; 系统功能简介 系统详细设计简述 各个模块的实现逻辑 最小模块组件的伪代码 本文档的预期的读者是&#xff1a; 开发人员 项目管理人员 测试人员 …

docker容器技术篇:Docker API配置与常用操作

docker容器技术篇&#xff1a;Docker API配置与使用 一、API具体是什么&#xff1f; 百科解释应用程序接口&#xff08;API&#xff09;&#xff0c;又称为应用编程接口&#xff0c;就是软件系统不同组成部分衔接的约定&#xff0c;蒙了吧&#xff01;&#xff01;&#xff0…

解决沁恒ch592单片机在tmos中使用USB总线时,接入USB Hub无法枚举频繁Reset的问题

开发产品时采用了沁恒ch592&#xff0c;做USB开发时遇到了一个奇葩的无法枚举问题。 典型症状 使用USB线直连电脑时没有问题&#xff0c;可以正常使用。 如果接入某些特定方案的USB Hub&#xff08;例如GL3510、GL3520&#xff09;&#xff0c;可能会出现以下2种情况&#xf…

【NLP练习】中文文本分类-Pytorch实现

中文文本分类-Pytorch实现 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 一、准备工作 1. 任务说明 本次使用Pytorch实现中文文本分类。主要代码与文本分类代码基本一致&#xff0c;不同的是本次任务使用…

MyBatis 解决上篇的参数绑定问题以及XML方式交互

前言 上文:MyBatis 初识简单操作-CSDN博客 上篇文章我们谈到的Spring中如何使用注解对Mysql进行交互 但是我们发现我们返回出来的数据明显有问题 我们发现后面三个字段的信息明显没有展示出来 下面我们来谈谈解决方案 解决方案 这里的原因本质上是因为mysql中和对象中的字段属性…

【微服务】------核心组件架构选型

1.微服务简介 微服务架构&#xff08;Microservice Architecture&#xff09;是一种架构概念&#xff0c;旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦&#xff0c;从而降低系统的耦合性&#xff0c;并提供更加灵活的服务支持。 2.微服务技术选型 区域内容…

【零基础学数据结构】顺序表实现书籍存储

目录 书籍存储的实现规划 ​编辑 前置准备&#xff1a; 书籍结构体&#xff1a; 书籍展示的初始化和文件加载 书籍展示的销毁和文件保存 书籍展示的容量检查 书籍展示的尾插实现 书籍展示的书籍增加 书籍展示的书籍打印 书籍删除展示数据 书籍展示修改数据 在指定位置之前…

2024年第八届人工智能与虚拟现实国际会议(AIVR 2024)即将召开!

2024年第八届人工智能与虚拟现实国际会议&#xff08;AIVR 2024&#xff09;将2024年7月19-21日在日本福冈举行。人工智能与虚拟现实的发展对推动科技进步、促进经济发展、提升人类生活质量等具有重要意义。AIVR 2024将携手各专家学者&#xff0c;共同挖掘智能与虚拟的无限可能…

加速度:电子元器件营销网站的功能和开发周期

据工信部预计&#xff0c;到2023年&#xff0c;我国电子元器件销售总额将达到2.1万亿元。随着资本的涌入&#xff0c;在这个万亿级赛道&#xff0c;市场竞争变得更加激烈的同时&#xff0c;行业数字化发展已是大势所趋。电子元器件B2B商城平台提升数据化驱动能力&#xff0c;扩…