1.16 LeetCode总结(基本算法)动态规划2


70. 爬楼梯

在这里插入图片描述
首先想到的是递归:

// 递归
int climbStairs(int n) {if (n == 1) {return 1;} else if (n == 2) {return 2;}return climbStairs(n - 1) + climbStairs(n - 2);
}

在这里插入图片描述
我们先来看看这个递归的时间复杂度吧:

递归时间复杂度 = 解决一个子问题时间*子问题个数
一个子问题时间 = f(n-1)+ f(n-2),也就是一个加法的操作,所以复杂度是 O(1);
问题个数 = 递归树节点的总数,递归树的总节点 = 2n-1,所以是复杂度O(2n)。
因此,青蛙跳阶,递归解法的时间复杂度 = O(1) * O(2^n) = O(2^n),就是指数级别的,爆炸增长的,如果n比较大的话,超时很正常的了。

回过头来,你仔细观察这颗递归树,你会发现存在大量重复计算,比如 f(8) 被计算了两次,f(7) 被重复计算了3次…所以这个递归算法低效的原因,就是存在大量的重复计算!

既然存在大量重复计算,那么我们可以先把计算好的答案存下来,即造一个备忘录,等到下次需要的话,先去备忘录查一下,如果有,就直接取就好了,备忘录没有才开始计算,那就可以省去重新重复计算的耗时啦!这就是带备忘录的解法。

自底向上的动态规划
动态规划跟带备忘录的递归解法基本思想是一致的,都是减少重复计算,时间复杂度也都是差不多。但是呢:

带备忘录的递归,是从f(10)往f(1)方向延伸求解的,所以也称为自顶向下的解法。
动态规划从较小问题的解,由交叠性质,逐步决策出较大问题的解,它是从f(1)往f(10)方向,往上推求解,所以称为自底向上的解法。
动态规划有几个典型特征,最优子结构、状态转移方程、边界、重叠子问题。在青蛙跳阶问题中:

f(n-1) 和 f(n-2) 称为 f(n) 的最优子结构
f(n) = f(n-1) + f(n-2) 就称为状态转移方程
f(1) = 1, f(2) = 2 就是边界啦
比如f(10)= f(9)+f(8), f(9) = f(8) + f(7) , f(8)就是重叠子问题。
我们来看下自底向上的解法,从 f(1) 往 f(10) 方向,想想是不是直接一个for循环就可以解决啦,如下:
在这里插入图片描述

int climbStairs(int n){//f(x) = f(x-1) + f(x-2) if (n <= 1){ // 第0阶和第1阶只有一种方法return 1;}int way;int memo[2] = {1,1};for (int i = 2; i <= n; ++i) {// 上楼梯->从第2阶楼梯开始way = memo[0] + memo[1];memo[0] = memo[1];memo[1] = way;}return way;
}

动态规划的解题思路
动态规划的核心思想就是拆分子问题,记住过往,减少重复计算。 并且动态规划一般都是自底向上的,因此到这里,基于青蛙跳阶问题,我总结了一下我做动态规划的思路:

  1. 穷举分析
    当台阶数是1的时候,有一种跳法,f(1) = 1
    当只有2级台阶时,有两种跳法,第一种是直接跳两级,第二种是先跳一级,然后再跳一级。即f(2) = 2;
    当台阶是3级时,想跳到第3级台阶,要么是先跳到第2级,然后再跳1级台阶上去,要么是先跳到第 1级,然后一次迈 2 级台阶上去。所以f(3) = f(2) + f(1) = 3
    当台阶是4级时,想跳到第3级台阶,要么是先跳到第3级,然后再跳1级台阶上去,要么是先跳到第 2级,然后一次迈 2 级台阶上去。所以f(4) = f(3) + f(2) = 5
    当台阶是5级时…
  1. 确定边界
    通过穷举分析,我们发现,当台阶数是1的时候或者2的时候,可以明确知道青蛙跳法。f(1) =1,f(2) = 2,当台阶n>=3时,已经呈现出规律f(3) = f(2) + f(1) =3,因此f(1) =1,f(2) = 2就是青蛙跳阶的边界。
  1. 找出规律,确定最优子结构
    n>=3时,已经呈现出规律 f(n) = f(n-1) + f(n-2) ,因此,f(n-1)和f(n-2) 称为 f(n) 的最优子结构。什么是最优子结构?有这么一个解释: 一道动态规划问题,其实就是一个递推问题。假设当前决策结果是f(n),则最优子结构就是要让 f(n-k) 最优,最优子结构性质就是能让转移到n的状态是最优的,并且与后面的决策没有关系,即让后面的决策安心地使用前面的局部最优解的一种性质
  1. 写出状态转移方程
    通过前面3步,穷举分析,确定边界,最优子结构,我们就可以得出状态转移方程啦
  1. 代码实现
    我们实现代码的时候,一般注意从底往上遍历,然后关注下边界情况,空间复杂度,也就差不多啦。动态规划有个框架的,大家实现的时候,可以考虑适当参考一下:
dp[0][0][...] = 边界值
for (状态1 :所有状态1的值) {for (状态2 :所有状态2的值) {for (...) {// 状态转移方程dp[状态1][状态2][...] = 求最值}}
}

118. 杨辉三角

在这里插入图片描述

int **generate(int numRows, int *returnSize, int **returnColumnSizes)
{int **res = (int **)malloc(sizeof(int *) * numRows);;*returnSize = numRows; // 行个数*returnColumnSizes = (int *)malloc(sizeof(int) * numRows); // 一维数组,每个元素代表了当前排有多少个有效的列printf("int *%d\n", sizeof(int *));printf("int %d\n",  sizeof(int));for (int i = 0; i < numRows; ++i) {res[i] = (int *)malloc(sizeof(int) * (i + 1));(*returnColumnSizes)[i] = i + 1; // 列元素个数res[i][0] = res[i][i] = 1;for (int j = 1; j < i; ++j) {res[i][j] = res[i - 1][j - 1] + res[i - 1][j];}}return res;
}

在LeetCode里 Sizeof(int *) 和 Sizeof(int)的大小时不一样的,注意:
https://img-blog.csdnimg.cn/311a735f68f14e01969e9f3bc327837e.png)


C 动态规划举例

在这里插入图片描述
手法1. 首先容易想到的是使用递归来求解,但递归的效率很低

// 递归 
int climbStairs(int n) {if (n <= 2) {return n;}return climbStairs(n - 1) + climbStairs(n - 2);
}

其实记忆化搜索就是在递归的条件上,为减少递归次数而产生的
比如下述代码中对于 mem[n] !=0 直接return memo[n].
我们总是习惯自顶向下思考问题,而不容易自底向上思考问题

手法2:记忆化搜索 – 自顶向下

// 记忆化搜索 -- 自顶往下
int memo[64] = { 0 };
int climbStairs(int n) {if (n <= 2) {return n;}// 如果满足条件则直接返回记忆数组里的值,减少递归次数if (n < 64 && memo[n] != 0) {return memo[n];}// 不满足条件才进行递归 O(n)memo[n] = climbStairs(n-1) + climbStairs(n-2);return memo[n];
}

手法3:动态规划 – 自底往上

// 动态规划 -- 自底往上
int climbStairs(int n) {if (n <= 2) {return n;}int a1 = 1;int a2 = 2;int memo = 0;// 自下而上的进行计算,动态规划for (int i = 3; i <= n; i++) {memo = a1 + a2;a1  = a2;a2  = memo;}return memo;
}

动态规划,将原问题拆解成若干子问题,同时保存子问题的答案,使得每个子问题只求解一次,最终获得原问题的答案;
下面这个图非常清晰地说明了动态规划的引入
在这里插入图片描述


D 0-1背包问题

– 动态规划中可以解决的一类最为经典的问题 – 01背包问题
在这里插入图片描述
状态转移方程:
状态转移

调试程序可以采用如下图片的数据,利于理解背包算法:
建立一个 3*6 二维数组,第0行只考虑第0个物品;第一行考虑 a[1][2]的weight为2,既可以放在id0的物品,也可以放下id1的物品;但两者相比,id1的物品要大一些,我们考虑放id1的物品。

在这里插入图片描述
如图,在放置a[1][2]这个元素时考虑:如果不放 ID1 的物品,那么背包价值为6,如果考虑放 ID1 的物品,需要回到a[0][0]的价值,加上放 ID1 物品的价值和为10,两者比较(10 > 6),放的价值大,所以考虑放 ID1的物品。
继续布满这个图,则得到下图:
在这里插入图片描述
如图,在放置a[2][4]这个元素时考虑:如果不放 ID2 的物品,那么背包价值为16,如果考虑放 ID2 的物品,需要回到a[1][1]的价值 6 ,加上放 ID2 物品的价值和为18,两者比较(18 > 16),放的价值大,所以考虑放 ID2的物品。

如下代码,就是建立上述图片里的二维数组的值(先求解了第0行数组和第1行往后的逐列逐行数组)
在这里插入图片描述

其实我们做0-1背包问题时,就是自底向上地完善这个 3*6 的二维数组,而处理的思路正好就是 动态规划.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/309560.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波(文末附3个算法源码)

效果: MPU6050姿态解算-卡尔曼滤波+四元数+互补滤波 目录 基础知识详解 欧拉角

Unsupervised Learning ~ Anomaly detection

unusual events vibration: 振动 Density estimation: Gaussian(normal) Distribution. standard deviation: 标准差 variance deviation sigma Mu Parameter estimation Anomaly detection algorithm 少量异常样本点的处理经验 algorithm evaluation skewed datatsets:…

Java实现二叉树(下)

1.前言 http://t.csdnimg.cn/lO4S7 在前文我们已经简单的讲解了二叉树的基本概念&#xff0c;本文将讲解具体的实现 2.基本功能的实现 2.1获取树中节点个数 public int size(TreeNode root){if(rootnull){return 0;}int retsize(root.left)size(root.right)1;return ret;}p…

【MySQL】索引篇

SueWakeup 个人主页&#xff1a;SueWakeup 系列专栏&#xff1a;学习技术栈 个性签名&#xff1a;保留赤子之心也许是种幸运吧 本文封面由 凯楠&#x1f4f8;友情提供 目录 本系列传送门 1. 什么是索引 2. 索引的特性 3. 索引的分类 4. 索引的优点及缺点 优点 缺点 5.…

实验5 流程图和盒图ns图

一、实验目的 通过绘制流程图和盒图&#xff0c;熟练掌握流程图和盒图的基本原理。 能对简单问题进行流程图和盒图的分析&#xff0c;独立地完成流程图和盒图设计。 二、实验项目内容&#xff08;实验题目&#xff09; 1、用Microsoft Visio绘制下列程序的程序流程图。 若…

蓝桥杯:握手问题和小球反弹问题

试题 A: 握手问题 本题总分&#xff1a; 5 分 【问题描述】 小蓝组织了一场算法交流会议&#xff0c;总共有 50 人参加了本次会议。在会议上&#xff0c; 大家进行了握手交流。按照惯例他们每个人都要与除自己以外的其他所有人进行一次握手&#xff08;且仅有一次&#x…

ChatGPT在线网页版

ChatGPT镜像 今天在知乎看到一个问题&#xff1a;“平民不参与内测的话没有账号还有机会使用ChatGPT吗&#xff1f;” 从去年GPT大火到现在&#xff0c;关于GPT的消息铺天盖地&#xff0c;真要有心想要去用&#xff0c;途径很多&#xff0c;别的不说&#xff0c;国内GPT的镜像…

基于GRU实现评论文本情感分析

一、问题建模 在线评论的细粒度情感分析对于深刻理解商家和用户、挖掘用户情感等方面有至关重要的价值&#xff0c;并且在互联网行业有极其广泛的应用&#xff0c;主要用于个性化推荐、智能搜索、产品反馈、业务安全等。此博文&#xff0c;共包含6大类20个细粒度要素的情感倾…

HTML制作跳动的心形网页

作为一名码农 也有自己浪漫的小心思嗷~ 该网页 代码整体难度不大 操作性较强 祝大家都幸福hhhhh 效果成品&#xff1a; 全部代码&#xff1a; <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML><HEAD><TITLE> 一个…

LeetCode 19. 删除链表的倒数第 N 个结点

LeetCode 19. 删除链表的倒数第 N 个结点 1、题目 力扣题目链接&#xff1a;19. 删除链表的倒数第 N 个结点 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a; head [1,2,3,4,5], n 2 输出&am…

获取数据信息、发现隐藏风险?AI+BI效果好得惊人!

奥威BI基于大语言模型&#xff08;LLM&#xff09;的AI助手终于上线内测了&#xff0c;今天我们先来一睹为快&#xff01; 获取数据信息、发现隐藏风险&#xff1f;AIBI效果好得惊人&#xff01; 打开利润表&#xff0c;这里可以看到2022年全年每个月的利润表实际情况&#xff…

面试八股——Spring——AOP与事务

AOP的定义 事务的实现 事务的失效场景 异常捕获处理 下图中由于②导致异常&#xff1a; 原因&#xff1a; 解决办法&#xff1a;自己抛出一个非检查异常&#xff08;具体原因看“抛出检查异常”&#xff09;。 抛出检查异常 由于①出错&#xff0c;导致抛出了检查异常 原因&…

通讯录的实现(单链表版本)

我们首先要知道通讯录的实现是基于单链表的基础上的&#xff0c;所以我们首先要搞懂单链表。&#xff08;注意&#xff1a;今天的代码量较多&#xff09;&#xff0c;但这不是阻挡我们前进的脚步&#xff0c;冲冲冲&#xff01;&#xff01;&#xff01; 单链表的简要概述 我们…

Nacos 服务发现-Spring Cloud Alibaba 综合架构实战(一)实现 application1 子模块

Nacos 服务发现-Spring Cloud Alibaba 综合架构实战&#xff08;一&#xff09;实现 application1 子模块 一、Nacos 服务发现-Spring Cloud Alibaba 综合架构实战-总体架构介绍 1、spring cloud 是一个较为全面的微服务框架集。 spring cloud 集成了如服务注册发现、配置中心…

将Ubuntu18.04默认的python3.6升级到python3.8

1、查看现有的 python3 版本 python3 --version 2、安装 python3.8 sudo apt install python3.8 3、将 python3.6 和 3.8 添加到 update-alternatives sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1 sudo update-alternatives --insta…

【MySQL】事务篇

SueWakeup 个人主页&#xff1a;SueWakeup 系列专栏&#xff1a;学习技术栈 个性签名&#xff1a;保留赤子之心也许是种幸运吧 目录 本系列专栏 1. 什么是事务 2. 事务的特征 原子性&#xff08;Atomicity&#xff09; 一致性&#xff08;Consistency&#xff09; 隔离性&…

AI术语大全:AGI、LLM、GenAI、GPT、ChatGPT和AIGC是什么意思?

讲动人的故事,写懂人的代码 自2022年底ChatGPT在全球AI界闪亮登场以后,你是不是经常听到AGI、LLM、GenAI、GPT和AIGC这几个词,但总是分不清它们到底是什么意思? 今天,我就用简单的话来给你讲讲这些词到底是什么意思。 AI,人工智能(Artificial Intelligence),就是让机…

【uniapp】省市区下拉列表组件

1. 效果图 2. 组件完整代码 <template><view class="custom-area-picker"><view

【C 数据结构】双向链表

文章目录 【 1. 基本原理 】【 2. 双向链表的 创建 】实例 - 输出双向链表 【 3. 双向链表 添加节点 】【 4. 双向链表 删除节点 】【 5. 双向链表查找节点 】【 7. 双向链表更改节点 】【 8. 实例 - 双向链表的 增删查改 】 【 1. 基本原理 】 表中各节点中都只包含一个指针&…

在线课程平台LearnDash评测 – 最佳 WordPress LMS插件

在我的LearnDash评测中&#xff0c;我探索了流行的 WordPress LMS 插件&#xff0c;该插件以其用户友好的拖放课程构建器而闻名。我深入研究了各种功能&#xff0c;包括课程创建、测验、作业、滴灌内容、焦点模式、报告、分析和管理工具。 我的评测还讨论了套餐和定价选项&…