Kafka 简单介绍

目录

一       消息队列(MQ)

1,为什么需要消息队列(MQ

2,常见的 MQ 中间件

3,MQ 传统应用场景之异步处理

4,使用消息队列的好处

5,消息队列的两种模式

5.1点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

5.2 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

二        Kafka 简介

1,Kafka 定义

2,Kafka 的特性

3,Kafka 系统架构

(1)Broker     服务器

(2)Topic   主题

(3)Partition  分区

(5)Replica

(6)Leader

(7)Follower

(8)producer

(9)Consumer

(10)Consumer Group(CG)

(11)offset 偏移量

(12)Zookeeper

4, Partation 数据路由规则

4.1 topic 与·partition

4.2 如何选择 partition

4.3   segment 文件

4.4  partition  特殊情况

4.5 broker 与partition

4,分区的原因

5,kafka 架构

三      部署 kafka 集群

1, 实验环境

2,   实验过程

2.1 下载解压

2.2  修改配置文件

2.3 修改环境变量

2.4  配置 Zookeeper 启动脚本

2.5  设置开机自启 分别启动 Kafka

​编辑

3,    Kafka 命令行操作

3.1  创建topic

3.2  查看当前服务器中的所有 topic

3.3  查看某个 topic 的详情

3.4   发布消息

3.5  消费消息

3.6  修改分区数

3.7   删除 topic


一       消息队列(MQ)

1,为什么需要消息队列(MQ

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。
我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。
 

2,常见的 MQ 中间件

当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等。

其中 kafka 针对大型日志,非常大的高并发

企业百分之95(RabbitMQ、RocketMQ)

3,MQ 传统应用场景之异步处理

4,使用消息队列的好处

(1)解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

(2)可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

(4)灵活性 & 峰值处理能力
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

(5)异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
 

5,消息队列的两种模式

5.1点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。


5.2 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。
发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目对标象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。

二        Kafka 简介

1,Kafka 定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,
Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。
 

2,Kafka 的特性

●高吞吐量、低延迟
Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

●可扩展性
kafka 集群支持热扩展

●持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

●容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)

●高并发
支持数千个客户端同时读写

3,Kafka 系统架构

(1)Broker     服务器

一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

(2)Topic   主题

可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储
 

(3)Partition  分区

为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。
 

(5)Replica

副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。
 

(6)Leader

每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。

(7)Follower

Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。
 

(8)producer

生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。
 

(9)Consumer

消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。
 

(10)Consumer Group(CG)

消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。
 

(11)offset 偏移量

可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时

(12)Zookeeper

Kafka 通过 Zookeeper 来存储集群的 meta 信息。

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。

也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。
 

4, Partation 数据路由规则

4.1 topic 与·partition

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。

每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
 

4.2 如何选择 partition

1.指定了 patition,则直接使用;
2.未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
3.patition 和 key 都未指定,使用轮询选出一个 patition。
 

4.3   segment 文件

每个 partition 中的数据使用多个 segment 文件存储。
 

4.4  partition  特殊情况

如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。
 

4.5 broker 与partition

●broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
●如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
●如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。
 

4,分区的原因

●方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
●可以提高并发,因为可以以Partition为单位读写了。
 

5,kafka 架构

同一组内 不能消费同一partition

三      部署 kafka 集群

1, 实验环境

22, 44, 55 机器做 zookeeper 集群

22 ,44 ,55 机器 装kafka

2,   实验过程

2.1 下载解压

官方下载地址:http://kafka.apache.org/downloads.html

移动并改名

2.2  修改配置文件

备份 配置文件  /usr/local/kafka/config/ server.properties

代码如下:

broker.id=0    
#21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2listeners=PLAINTEXT://192.168.217.22:9092    
#31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改num.network.threads=3    
#42行,broker 处理网络请求的线程数量,一般情况下不需要去修改num.io.threads=8         
#45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数socket.send.buffer.bytes=102400       
#48行,发送套接字的缓冲区大小socket.receive.buffer.bytes=102400    
#51行,接收套接字的缓冲区大小socket.request.max.bytes=104857600    
#54行,请求套接字的缓冲区大小log.dirs=/usr/local/kafka/logs       #60行,kafka运行日志存放的路径,也是数据存放的路径num.partitions=1    
#65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖num.recovery.threads.per.data.dir=1    
#69行,用来恢复和清理data下数据的线程数量log.retention.hours=168    
#103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除log.segment.bytes=1073741824   #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件zookeeper.connect=192.168.217.22:2181,192.168.217.44:2181,192.168.217.55:2181   
#123行,配置连接Zookeeper集群地址

2.3 修改环境变量

vim /etc/profile   加在文末

export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin在文件中定义环境变量 KAFKA_HOME,指明 Kafka 的安装路径为 /usr/local/kafka。
扩展系统 PATH 变量,将 Kafka 的 bin 目录添加进去,使得用户可以便捷地在任何目录下直接调用 Kafka 提供的命令。
执行 source /etc/profile 命令,使上述改动即时生效于当前 Shell 会话。

source /etc/profile
 

2.4  配置 Zookeeper 启动脚本

vim /etc/init.d/kafka
代码如下;

#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)echo "---------- Kafka 启动 ------------"${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)echo "---------- Kafka 停止 ------------"${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)$0 stop$0 start
;;
status)echo "---------- Kafka 状态 ------------"count=$(ps -ef | grep kafka | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thenecho "kafka is not running"elseecho "kafka is running"fi
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac

2.5  设置开机自启 分别启动 Kafka

3,    Kafka 命令行操作

3.1  创建topic

kafka-topics.sh --create --zookeeper 192.168.217.22:2181,192.168.217.44:2181,192.168.217.55:2181 --replication-factor 2 --partitions 3 --topic test
 

--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 
--partitions:定义分区数 
--topic:定义 topic 名称

 

3.2  查看当前服务器中的所有 topic

kafka-topics.sh --list --zookeeper 192.168.217.22:2181,192.168.217.44:2181,192.168.217.55:2181 

3.3  查看某个 topic 的详情

kafka-topics.sh --describe --zookeeper 192.168.217.22:2181,192.168.217.44:2181,192.168.217.55:2181 

3.4   发布消息

kafka-console-producer.sh --broker-list 192.168.217.22:9092,192.168.217.44:9092,192.168.217.55:9092  --topic test

3.5  消费消息

kafka-console-consumer.sh --bootstrap-server 192.168.217.22:9092,192.168.217.44:9092,192.168.217.55:9092 --topic test --from-beginning

--from-beginning:会把主题中以往所有的数据都读取出来
 

3.6  修改分区数

kafka-topics.sh --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181 --alter --topic test --partitions 6

3.7   删除 topic

kafka-topics.sh --delete --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181 --topic test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/309672.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在Odoo 17库存中通过批次号和序列号追踪产品

在Odoo 17库存管理中,通过批次号和序列号追踪产品是一种确保产品从生产到销售全程可追溯的重要方式。在产品打包时或生产过程中会分配这些编号。批次号是指应用于具有相似属性的一组产品的一系列数字或代码,而序列号则是分配给特定单一物品的独特编号。O…

matlab使用教程(44)—绘制带标记的二维曲线图

在线图中添加标记是区分多个线条或突出显示特定数据点的有用方法。使用下面的一种方式添加标记: • 在线条设定输入参数(例如 plot(x,y,-s) )中包含标记符号。 • 将 Marker 属性指定为一个名称-值对组,例如 plot(x,y,Marker,s…

【干货】【常用电子元器件介绍】【晶振】--晶体振荡器/陶瓷谐振元器件的识别、检测、选用

声明:本人水平有限,博客可能存在部分错误的地方,请广大读者谅解并向本人反馈错误。 一、 石英晶体振荡器 石英晶体振荡器(Quartz Crystal Oscillator)又称石英晶体谐振器,简称石英晶振或者   石英晶体振荡器是一种用于稳定频率和选择频率的电子元件,是高精度和高稳定度的…

信息系统项目管理师0051:管理基础(4信息系统管理—4.1管理方法—4.1.1管理基础)

点击查看专栏目录 文章目录 第四章 信息系统管理4.1管理方法4.1.1管理基础1.层次结构2.系统管理第四章 信息系统管理 在信息技术和数据资源要素的推动下,社会各领域已经并正在加速进入数字化的全新发展时期,基于智能、网络和大数据的新经济业态正在形成,从“数字融合”向“数…

EVenn 的维恩图综合方法(自备)

imeta最新文献:Visualizing set relationships: EVenns comprehensive approach to Venn diagrams 网址EVenn (Evenn) 提供多种在线可视化方法。 维恩图由于易于解释,可作为可视化集合关系的宝贵工具。广泛应用于代谢组学、基因…

SQLite超详细的编译时选项(十六)

返回:SQLite—系列文章目录 上一篇:SQLite数据库文件格式(十五) 下一篇:SQLite 在Android安装与定制方案(十七) 1. 概述 对于大多数目的,SQLite可以使用默认的 编译选项。但是…

Python学习笔记15 - 字符串

字符串是一个不可变的字符序列,另一个不可变的序列是元组 字符串的驻留机制 字符串的常用操作 字符串的查询 字符串的大小写转换 字符串内容 对齐操作的方法 字符串的劈分操作 字符串的判断 字符串替换 字符串合并 字符串的比较 字符串的切片 格式化字符串 字符串…

地表蒸散发遥感产品信息提取验证与融合应用

蒸散发是陆地水循环重要变量,同时对农业水资源规划与管理、全球环境变化等研究异常关键。本文主要介绍常用的区域及全球蒸散发产品,讲解蒸散发数据产品的下载、处理、可视化、数值统计等方法;蒸散发产品的验证方法、精度评价、不确定性评估&a…

程序员必读:Python 中如何完美处理日志记录?

日志记录在软件开发中扮演着至关重要的角色。它不仅可以帮助开发人员跟踪应用程序的状态和行为,还能提供有价值的诊断信息。Python 提供了内置的 logging 模块,为开发者提供了一个强大且灵活的日志记录工具。 日志的重要性 在软件开发中,对…

HW面试经验分享 | 某服蓝队初级

前言 依稀记得是22年 7、8月份参加的HW,当时是比较炎热的时候,但又夹杂一丝秋意。也是头一次去离家乡比较远的地方,多少有点忐忑……(怕被噶腰子、水土不服、吃穿用住没着落等等),但最终也是平安无事且顺利…

优化两个简单的嵌套循环

优化嵌套循环的方法通常取决于具体的情况,但有几种常见的技巧可以尝试。尽可能减少内部循环的迭代次数,这可以通过更有效的算法或数据结构来实现。如果内部循环中使用的值在外部循环中已经计算过,可以尝试在外部循环中计算并将结果存储起来&a…

zato,一个神奇的 Python 库!

大家好,今天为大家分享一个神奇的 Python 库 - zato。 Zato是一个高性能的Python企业服务总线(ESB)和应用集成框架,专为简化复杂系统间的通信和数据交换而设计。它提供了一个灵活、可扩展的平台,以支持各种集成需求,从简单的数据传…

DB schema表中使用全局变量及在DB组件中查询

DB schema表中使用全局变量及在DB组件中查询 规则如下: 使用如下: 如果在unicloud-db组件上不加判断条件,就会报错,并进入到登录页。 那么就会进入到登录页,加上了判断条件,有数据了就不会了。 因为在sc…

【信号处理】心电信号传统R波检测定位典型方法实现(matlab)

关于 心电信号中QRS波检测是一个非常重要的步骤,可以用于实现重要波群的基本定位,在定位基础上,可以进一步分析心电信号的特征变化,从而为医疗诊断提供必要的参考。 工具 MATLAB ECG心电信号 方法实现 ECG心电信号加载 ecg …

【基于HTML5的网页设计及应用】——事件代理.

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

华为OD机试 - 内存冷热标记(Java 2024 C卷 100分)

华为OD机试 2024C卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷C卷)》。 刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测试…

2024最新 PyCharm 2024.1 更新亮点看这篇就够了

2024最新 PyCharm 2024.1 更新亮点看这篇就够了 文章目录 2024最新 PyCharm 2024.1 更新亮点看这篇就够了🚀 PyCharm 2024.1 发布:全面升级,助力高效编程!摘要引言 🚀 快速掌握 Hugging Face:模型与数据集文…

IOS手机耗电量测试

1. 耗电量原始测试方法 1.1 方法原理: 根据iPhone手机右上角的电池百分比变化来计算耗电量。 1.2实际操作: 在iOS通用设置中打开电池百分比数值显示,然后操作30分钟,60分钟,90分钟,看开始时和结束时电池…

经久耐用特氟龙材质塑料烧杯PFA坩埚耐受强酸强碱耐高温

PFA烧杯在实验过程中可作为储酸容器或涉及强酸强碱类实验的反应容器,用于盛放样品、试剂,可搭配电热板加热、蒸煮、赶酸用。 PFA烧杯规格参考:10ml、30ml、50ml、100ml、250ml、500ml、1000ml、2000ml。 外壁均有凸起刻度,直筒设…

CSS导读 (元素显示模式 上)

(大家好,今天我们将继续来学习CSS的相关知识,大家可以在评论区进行互动答疑哦~加油!💕) 目录 三、CSS的元素显示模式 3.1 什么是元素显示模式 3.2 块元素 3.3 行内元素 3.4 行内块元素 3.5 元素…