JavaEE初阶-多线程易忘点总结

文章目录

  • 1.PCB
      • PID
      • 文件描述符表
      • 内存指针
      • 状态
      • 上下文
      • 优先级
      • 记账信息
      • tgid
  • 2.线程与进程的区别
  • 3.sleep和interrupt方法的关系
      • 变量终止线程
      • interrupt方法终止线程
  • 4.线程状态
  • 5.出现线程不安全的原因
      • 线程在系统中是随即调度,抢占式执行的。
      • 多个线程修改同一个变量
      • 线程针对变量的修改操作不是“原子”的
      • 内存可见性
      • 指令重排序
  • 6.死锁发生的三种场景
      • 锁是不可重入锁,一个线程针对同一个锁对象连续加锁多次。
      • 两个线程两把锁。
      • N个线程,M把锁。
  • 7.死锁的必要条件(背)
      • 锁具有互斥性特性(基本特点)
      • 锁不可抢占(不可剥夺)(基本特点)
      • 请求和保持(代码结构)
      • 循环等待(代码结构)
  • 8.单例模式中的饿汉模式与懒汉模式的区别
      • 饿汉模式
      • 懒汉模式
  • 9.编译器优化
      • 内存可见性
      • 指令重排序
  • 10.阻塞队列-生产者消费者模型
      • 解耦合
      • 削峰填谷
  • 11.线程池
  • 12.定时器


1.PCB

PID

不同线程的PID是不同的。

文件描述符表

记录使用的文件资源。

内存指针

指向线程要使用数据以及指令。

状态

指明系统状态。

上下文

当线程切换出cpu停止执行,此时上下文会记录中间结果,方便切换回cpu后继续执行,这个过程和程序计数器有关。

优先级

给线程分配在cpu上执行的时间存在倾斜。

记账信息

操作系统也要避免一些线程一直吃不到资源,记录时间,给吃的少的多分配一点资源。

tgid

是进程的id,同一个进程下的不同线程是相同的。

2.线程与进程的区别

参考以下博客

3.sleep和interrupt方法的关系

变量终止线程

package Thread;public class Demo10 {private static boolean isRunning=true;public static void main(String[] args) {Thread t=new Thread(()->{while (isRunning) {System.out.println("hello thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}System.out.println("线程已经终止");});t.start();try {Thread.sleep(3000);} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("准备终止线程");isRunning=false;}
}

通过在主线程中修改变量的值,来跳出t线程中的循环。但是有一个缺点就是即使修改了变量循环可能也不会立刻结束,因为修改变量时可能线程t代码刚好执行到sleep,所以t不会立马终止,至少要等这一次循环执行完成后才能够终止。

interrupt方法终止线程

package Thread;public class Demo11 {public static void main(String[] args) {Thread t = new Thread(() -> {while (!Thread.currentThread().isInterrupted())System.out.println("hello Thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}});t.start();try {Thread.sleep(3000);} catch (InterruptedException e) {throw new RuntimeException(e);}t.interrupt();}
}

使用interrupt方法可以修改Thread.currentThread().isInterrupted()这个函数值为true,从而终止上述代码的线程t。如果说使用interrupt方法时线程t代码刚好执行到循环条件,那么t直接终止,如果使用interrupt方法时线程又执行到sleep,interrupt方法会直接唤醒线程t,但是同时会将Thread.currentThread().isInterrupted()这个函数值重新变为false,为了避免循环继续进行,此时就可以在sleep被唤醒的哪个trycatch中加入处理逻辑。

4.线程状态

在这里插入图片描述

5.出现线程不安全的原因

线程在系统中是随即调度,抢占式执行的。

多个线程修改同一个变量

线程针对变量的修改操作不是“原子”的

内存可见性

指令重排序

6.死锁发生的三种场景

锁是不可重入锁,一个线程针对同一个锁对象连续加锁多次。

两个线程两把锁。

N个线程,M把锁。

7.死锁的必要条件(背)

锁具有互斥性特性(基本特点)

一个线程拿到锁,如果另一个线程想要申请同一个锁就要阻塞等待。

锁不可抢占(不可剥夺)(基本特点)

一个线程拿到锁,除非自己释放,否则别人拿不走。

请求和保持(代码结构)

一个线程拿到一把锁之后,在不释放锁的前提下,去尝试获取其它锁。

循环等待(代码结构)

多个线程获取多个锁的过程中,出现了循环等待,A等待B,B又等待A。当代码中确实需要多个线程获取多把锁,约定好加锁的顺序,这样就能避免死锁。

8.单例模式中的饿汉模式与懒汉模式的区别

饿汉模式

package Thread;class Singleton {public static Singleton instance = new Singleton();public static Singleton getInstance() {return instance;}private Singleton() {}
}public class Demo31 {public static void main(String[] args) {Singleton s1 = Singleton.getInstance();Singleton s2 = Singleton.getInstance();System.out.println(s1 == s2);}
}

懒汉模式

package Thread;
class Singleton1 {public static Object locker = new Object();public static Singleton1 instance = null;public static Singleton1 getInstance() {if (instance == null) { //避免已经建立了对象重新上锁浪费性能,直接返回对象即可synchronized (locker) {if (instance == null) { //避免在多线程情况下重复创建对象,造成线程安全问题instance = new Singleton1();}}}return instance;}private Singleton1() {}
}public class Demo32 {public static void main(String[] args) {Singleton1 s1 = Singleton1.getInstance();Singleton1 s2 = Singleton1.getInstance();System.out.println(s1 == s2);}
}

饿汉模式在多线程的情况下使用getInstance方法是安全的,因为类对象已经创建好了,getInstance方法做的只是读。懒汉模式则是不安全的,因为在其getInstance方法中会创建类对象。通过给代码加锁会解决懒汉模式的线程安全问题,但是懒汉模式只有在创建类对象实例的时候会出现线程安全问题,创建以后也就是读。为了避免每次都要给代码加上一个锁给程序增加负担,在sychroinzed前面加上一个if语句进行判断,如果已经创建实例了就不用加锁了。

9.编译器优化

内存可见性

package Thread;import java.util.Scanner;public class Demo27 {private  static int count=0;public static void main(String[] args) {Thread t=new Thread(()->{while(count==0) {//}System.out.println("t1 执行结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("输入数字:");count=scanner.nextInt();});t.start();t2.start();}}

下面这段代码会出现内存的可见性问题,将从内存中读取count值的操作称为load 判断操作称为cmp,load和cmp的执行速度差了好几个数量级,在线程2开始执行代码提示输入数字时,线程1的while循环已经执行了很多遍。java编译器会自动给代码进行优化,导致load只是第一次时真正从内存中读取count值,其余都是从cpu的寄存器中读取,然而线程2修改count是在内存中进行修改,线程1根本访问不到count的值,可以在变量前加上volatile关键字来提醒编译器不要优化。

指令重排序

指令重排序指的是编译器优化的一种,改变指令在cpu上执行的顺序,但是不影响最终的逻辑结果。对于单线程这样不会出现问题,但是多线程不行。

package Thread;//单例模式-懒汉模式
//在多线程的情况下是不安全的
class Singleton1 {public static Object locker = new Object();public static Singleton1 instance = null;public static Singleton1 getInstance() {if (instance == null) { //避免已经建立了对象重新上锁浪费性能,直接返回对象即可synchronized (locker) {if (instance == null) { //避免在多线程情况下重复创建对象,造成线程安全问题instance = new Singleton1();}}}return instance;}private Singleton1() {}
}public class Demo32 {public static void main(String[] args) {Singleton1 s1 = Singleton1.getInstance();Singleton1 s2 = Singleton1.getInstance();System.out.println(s1 == s2);}
}

举例说这里的懒汉模式的代码,在getInstance方法中建立对象分三步
(1)为对象申请空间。
(2)初始化空间(调用构造函数)。
(3)将地址赋给对象的引用。
现在假设一种情况,t1线程在执行上面的懒汉模式的getInstance方法时,因为编译器优化建立对象的指令顺序变为了1,3,2,那么如果t1线程运行到3时刚好t2线程运行到getInstance方法中的第一个判断语句,发现此时instance引用已经被赋值过了就直接返回,但是实际上这里的instance只是得到了地址,地址指向的空间并未初始化,这种情况就是指令重排序所造成的线程安全问题。
解决这种问题的方式也很简单,在你要处理的变量前面加上volatile即可告诉编译器这里不需要优化。

10.阻塞队列-生产者消费者模型

生产者消费者模型的两个优势:
(1)削峰填谷
(2)解耦合
一般在一个进程内的多线程中使用阻塞队列实现生产者消费者模型,在分布式系统中使用消息队列来实现。消息队列就是根据topic分为不同的阻塞队列,根据topic对不同的阻塞队列上进行操作。

解耦合

在这里插入图片描述
如果直接让服务器A和服务器B进行交互,那么它们必定会包含很多与彼此相关的代码。修改A会影响到B,修改B也会影响到A。
在这里插入图片描述
如上图引入一个消息队列,这样A只关心与队列的交互,B也只关心与队列的交互,因此A和B之间的互相影响就被减小非常多。

削峰填谷

在这里插入图片描述
对于服务器A客户端可能会突然发来大量请求,A的处理比较简单,A将请求发送给B,B接收处理的开销相对较大,一旦请求数目过多,B就会挂掉。使用一个条件队列来接收A发送给B的请求,这样无论A发送的请求数目有多少,B都可以按照自己的节奏来处理请求。

11.线程池

我们引入线程就是因为进程创建销毁的代价比较大,但是随着发展,客户端向服务器发送的请求可能呈指数增长,使用线程也觉得创建销毁的开销大了,所以引入线程池以及协程的概念,协程暂不讨论。
为什么引入线程池能够提高效率?因为创建销毁线程的操作主要是用户态以及内核态代码配合完成的工作,但是线程池先提前将线程创建好,然后建立好数据结构保存这些线程,需要线程直接拿,不需要了就放回去,这样的过程全是用户态的就节省了开销,避免与内核态交互。
另外线程池的使用主要分为Executors.newFixedThreadPool这种包装的线程池以及ThreadPoolExecutor这种标准的线程池的类,前者简单参数少,后者参数多更精细。

12.定时器

基本使用就是Timer类,然后构造对象就是需要两个参数,第一个是要执行的任务,第二个就是时间。构建这样的对象之后,定时器中的线程就会自动在你指定的第二个参数时间后去执行你指定的任务。

package Thread;import java.util.Timer;
import java.util.TimerTask;public class Demo39 {public static void main(String[] args) {Timer timer = new Timer();timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println(3333);}}, 3333);timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println(2222);}}, 2222);timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println(1111);}}, 1111);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/318955.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pycharm新建工程时使用Python自带解释器的方法

Pycharm新建工程时使用Python自带解释器的方法 新建Project时最好不要新建Python解释器,实践证明,自己新建的Python解释器容易出现各种意想不到的问题。 那么怎样使用Python安装时自带的解释器呢? 看下面的三张截图大家就清楚了。 我的Pyth…

【大语言模型LLM】-基于ChatGPT搭建客服助手(1)

🔥博客主页:西瓜WiFi 🎥系列专栏:《大语言模型》 很多非常有趣的模型,值得收藏,满足大家的收集癖! 如果觉得有用,请三连👍⭐❤️,谢谢! 长期不…

数据库(MySQL)—— 多表查询

数据库(MySQL)—— 多表查询 多表关系一对多多对多一对一多表查询概述数据准备查询形式笛卡尔积 分类连接查询内连接外连接左外连接右外连接 自连接联合查询 今天我们来进入MySQL中一个非常重要的部分:多表查询: 多表关系 多表关…

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-9.1-LED灯(模仿STM32驱动开发实验)

前言: 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM(MX6U)裸机篇”视频的学习笔记,在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…

MySQL技能树学习——数据库组成

数据库组成: 数据库是一个组织和存储数据的系统,它由多个组件组成,这些组件共同工作以确保数据的安全、可靠和高效的存储和访问。数据库的主要组成部分包括: 数据库管理系统(DBMS): 数据库管理系…

eNSP-抓包解析HTTP、FTP、DNS协议

一、环境搭建 1.http服务器搭建 2.FTP服务器搭建 3.DNS服务器搭建 二、抓包 三、http协议 1.HTTP协议,建立在TCP协议之上 2.http请求 3.http响应 请求响应报文参考:https://it-chengzi.blog.csdn.net/article/details/113809803 4.浏览器开发者工具抓包…

爬虫自动化之drissionpage实现随时切换代理ip

目录 一、视频二、dp首次启动设置代理三、dp利用插件随时切换代理一、视频 视频直接点击学习SwitchyOmega插件使用其它二、dp首次启动设置代理 from DrissionPage import ChromiumPage, ChromiumOptions from loguru

Flask教程1:flask框架基础入门,路由、模板、装饰器

文章目录 一、 简介二、 概要 一、 简介 Flask是一个非常小的Python Web框架,被称为微型框架;只提供了一个稳健的核心,其他功能全部是通过扩展实现的;意思就是我们可以根据项目的需要量身定制,也意味着我们需要学习各…

C++设计模式-创建型设计模式

设计模式 设计模式是什么 设计模式是指在软件开发中,经过验证的,用于解决在特定环境下,重复出现的,特定问题的解决方案;其实就是解决问题的固定套路。但是要慎用设计模式,有一定的工程代码量之后用它比较…

[每日AI·0501]GitHub 版 Devin,Transformer的强力挑战者 Mamba,Sora 制作细节与踩坑,OpenAI 记忆功能

AI 资讯 国资委:加快人工智能等新技术与制造全过程、全要素深度融合GitHub版 Devin 上线,会打字就能开发应用,微软 CEO:重新定义 IDE在12个视频理解任务中,Mamba 先打败了 TransformerSora 会颠覆电影制作吗&#xff…

信息泄露.

一,遍历目录 目录遍历:没有过滤目录相关的跳转符号(例如:../),我们可以利用这个目录找到服务器中的每一个文件,也就是遍历。 tipe:依次点击文件就可以找到flag 二,phpi…

LNMP部署及应用(Linux+Nginx+MySQL+PHP)

LNMP 我们为什么采用LNMP这种架构? 采用Linux、PHP、MySQL的优点我们不必多说。 Nginx是一个小巧而高效的Linux下的Web服务器软件,是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,已经在一些俄罗斯的大型网站上运行多年,目…

服务器被攻击,为什么后台任务管理器无法打开?

在服务器遭受DDoS攻击后,当后台任务管理器由于系统资源耗尽无法打开时,管理员需要依赖间接手段来进行攻击类型的判断和解决措施的实施。由于涉及真实代码可能涉及到敏感操作,这里将以概念性伪代码和示例指令的方式来说明。 判断攻击类型 步…

18、ESP32 ESP-NOW 点对点通信

ESP-NOW 是乐鑫自主研发的无连接通信协议,具有短数据包传输功能。该协议使多个设备能够以简单的方式相互通信。 ESP-NOW 功能 ESP-NOW 支持以下功能: 加密和未加密的单播通信;混合加密和未加密的对等设备;最多可携带 250 字节 的有效载荷;发送回调功能…

Python | Leetcode Python题解之第66题加一

题目: 题解: class Solution:def plusOne(self, digits: List[int]) -> List[int]:n len(digits)for i in range(n - 1, -1, -1):if digits[i] ! 9:digits[i] 1for j in range(i 1, n):digits[j] 0return digits# digits 中所有的元素均为 9retu…

阿里云API网关 产品的使用笔记

阿里云的产品虽多,还是一如既往的一用一个看不懂,该模块的文档依旧保持“稳定”发挥,磕了半天才全部跑通。 用阿里云API网关的原因是,在Agent中写插件调用API的时候,需要使用Https协议,又嫌搞备案、证书等事…

ASV1000视频监控平台:通过SDK接入海康网络摄像机IPC

目录 一、为何要通过SDK接入海康网络摄像机 (一)海康网络摄像机的SDK的功能 1、视频采集和显示 2、视频存储 3、视频回放 4、报警事件处理 5、PTZ控制 6、自定义设置 7、扩展功能 (二)通过SDK接入的好处(相对…

ARP欺骗使局域网内设备断网

一、实验准备 kali系统:可使用虚拟机软件模拟 kali虚拟机镜像链接:https://www.kali.org/get-kali/#kali-virtual-machines 注意虚拟机网络适配器采用桥接模式 局域网内存在指定断网的设备 二、实验步骤 打开kali系统命令行:ctrlaltt可快…

nginx--配置文件

组成 主配置文件:nginx.conf 子配置文件:include conf.d/*.conf 协议相关的配置文件:fastcgi uwsgi scgi等 mime.types:⽀持的mime类型,MIME(Multipurpose Internet Mail Extensions)多用途互联⽹网邮件扩展类型&…

Linux服务器常用命令总结

view查找日志关键词 注意日志级别,回车后等一会儿,因为文件可能比较大加载完需要时间 当内容显示出来后,使用“/关键词”搜索 回车就能搜到,n表示查找下一个,N表示查找上一个 find 查找 find Family -name book …