OpenCV如何使用 GDAL 读取地理空间栅格文件(72)

返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV的周期性噪声去除滤波器(70)
下一篇 :OpenCV系列文章目录(持续更新中......)

目录

目标

代码:

解释: 

如何使用 GDAL 读取栅格数据

注意

通常应避免使用经度/纬度(地理)坐标

查找拐角坐标

结果

地理空间栅格数据是地理信息系统和摄影测量中大量使用的产品。栅格数据通常可以表示影像和数字高程模型 (DEM)。用于加载 GIS 影像的标准库是地理数据抽象库 (GDAL)。在此示例中,我们将展示使用本机 OpenCV 函数加载 GIS 栅格格式的技术。此外,我们将展示一些示例,说明OpenCV如何将这些数据用于新颖有趣的目的。

目标

本教程的主要目标:

  • 如何使用 OpenCV imread 加载卫星图像。
  • 如何使用 OpenCV imread 加载 SRTM 数字高程模型
  • 给定图像和 DEM 的角坐标,将高程数据与图像相关联,以查找每个像素的高程。
  • 显示一个基本、易于实施的地形热图示例。
  • 显示 DEM 数据与正射校正影像的基本用法。

为了实现这些目标,以下代码采用数字高程模型以及旧金山的 GeoTiff 图像作为输入。对影像和 DEM 数据进行处理并生成影像的地形热图,并标注在海湾水位上升 10、50 和 100 米时将受到影响的城市区域。

代码如下:

/** gdal_image.cpp -- Load GIS data into OpenCV Containers using the Geospatial Data Abstraction Library
*/// OpenCV Headers
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"// C++ Standard Libraries
#include <cmath>
#include <iostream>
#include <stdexcept>
#include <vector>using namespace std;// define the corner points
// Note that GDAL library can natively determine this
cv::Point2d tl( -122.441017, 37.815664 );
cv::Point2d tr( -122.370919, 37.815311 );
cv::Point2d bl( -122.441533, 37.747167 );
cv::Point2d br( -122.3715, 37.746814 );// determine dem corners
cv::Point2d dem_bl( -122.0, 38);
cv::Point2d dem_tr( -123.0, 37);// range of the heat map colors
std::vector<std::pair<cv::Vec3b,double> > color_range;// List of all function prototypes
cv::Point2d lerp( const cv::Point2d&, const cv::Point2d&, const double& );cv::Vec3b get_dem_color( const double& );cv::Point2d world2dem( const cv::Point2d&, const cv::Size&);cv::Point2d pixel2world( const int&, const int&, const cv::Size& );void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r );/** Linear Interpolation* p1 - Point 1* p2 - Point 2* t - Ratio from Point 1 to Point 2
*/
cv::Point2d lerp( cv::Point2d const& p1, cv::Point2d const& p2, const double& t ){return cv::Point2d( ((1-t)*p1.x) + (t*p2.x),((1-t)*p1.y) + (t*p2.y));
}/** Interpolate Colors
*/
template <typename DATATYPE, int N>
cv::Vec<DATATYPE,N> lerp( cv::Vec<DATATYPE,N> const& minColor,cv::Vec<DATATYPE,N> const& maxColor,double const& t ){cv::Vec<DATATYPE,N> output;for( int i=0; i<N; i++ ){output[i] = (uchar)(((1-t)*minColor[i]) + (t * maxColor[i]));}return output;
}/** Compute the dem color
*/
cv::Vec3b get_dem_color( const double& elevation ){// if the elevation is below the minimum, return the minimumif( elevation < color_range[0].second ){return color_range[0].first;}// if the elevation is above the maximum, return the maximumif( elevation > color_range.back().second ){return color_range.back().first;}// otherwise, find the proper starting indexint idx=0;double t = 0;for( int x=0; x<(int)(color_range.size()-1); x++ ){// if the current elevation is below the next item, then use the current// two colors as our rangeif( elevation < color_range[x+1].second ){idx=x;t = (color_range[x+1].second - elevation)/(color_range[x+1].second - color_range[x].second);break;}}// interpolate the colorreturn lerp( color_range[idx].first, color_range[idx+1].first, t);
}/** Given a pixel coordinate and the size of the input image, compute the pixel location* on the DEM image.
*/
cv::Point2d world2dem( cv::Point2d const& coordinate, const cv::Size& dem_size ){// relate this to the dem points// ASSUMING THAT DEM DATA IS ORTHORECTIFIEDdouble demRatioX = ((dem_tr.x - coordinate.x)/(dem_tr.x - dem_bl.x));double demRatioY = 1-((dem_tr.y - coordinate.y)/(dem_tr.y - dem_bl.y));cv::Point2d output;output.x = demRatioX * dem_size.width;output.y = demRatioY * dem_size.height;return output;
}/** Convert a pixel coordinate to world coordinates
*/
cv::Point2d pixel2world( const int& x, const int& y, const cv::Size& size ){// compute the ratio of the pixel location to its dimensiondouble rx = (double)x / size.width;double ry = (double)y / size.height;// compute LERP of each coordinatecv::Point2d rightSide = lerp(tr, br, ry);cv::Point2d leftSide = lerp(tl, bl, ry);// compute the actual Lat/Lon coordinate of the interpolated coordinatereturn lerp( leftSide, rightSide, rx );
}/** Add color to a specific pixel color value
*/
void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r ){if( pix[0] + b < 255 && pix[0] + b >= 0 ){ pix[0] += b; }if( pix[1] + g < 255 && pix[1] + g >= 0 ){ pix[1] += g; }if( pix[2] + r < 255 && pix[2] + r >= 0 ){ pix[2] += r; }
}/** Main Function
*/
int main( int argc, char* argv[] ){/** Check input arguments*/if( argc < 3 ){cout << "usage: " << argv[0] << " <image_name> <dem_model_name>" << endl;return -1;}// load the image (note that we don't have the projection information. You will// need to load that yourself or use the full GDAL driver. The values are pre-defined// at the top of this filecv::Mat image = cv::imread(argv[1], cv::IMREAD_LOAD_GDAL | cv::IMREAD_COLOR );// load the dem modelcv::Mat dem = cv::imread(argv[2], cv::IMREAD_LOAD_GDAL | cv::IMREAD_ANYDEPTH );// create our output productscv::Mat output_dem( image.size(), CV_8UC3 );cv::Mat output_dem_flood( image.size(), CV_8UC3 );// for sanity sake, make sure GDAL Loads it as a signed shortif( dem.type() != CV_16SC1 ){ throw std::runtime_error("DEM image type must be CV_16SC1"); }// define the color range to create our output DEM heat map// Pair format ( Color, elevation ); Push from low to high// Note: This would be perfect for a configuration file, but is here for a working demo.color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 188, 154, 46), -1));color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 110, 220, 110), 0.25));color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 150, 250, 230), 20));color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 160, 220, 200), 75));color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 220, 190, 170), 100));color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 250, 180, 140), 200));// define a minimum elevationdouble minElevation = -10;// iterate over each pixel in the image, computing the dem pointfor( int y=0; y<image.rows; y++ ){for( int x=0; x<image.cols; x++ ){// convert the pixel coordinate to lat/lon coordinatescv::Point2d coordinate = pixel2world( x, y, image.size() );// compute the dem image pixel coordinate from lat/loncv::Point2d dem_coordinate = world2dem( coordinate, dem.size() );// extract the elevationdouble dz;if( dem_coordinate.x >= 0 && dem_coordinate.y >= 0 &&dem_coordinate.x < dem.cols && dem_coordinate.y < dem.rows ){dz = dem.at<short>(dem_coordinate);}else{dz = minElevation;}// write the pixel value to the fileoutput_dem_flood.at<cv::Vec3b>(y,x) = image.at<cv::Vec3b>(y,x);// compute the color for the heat map outputcv::Vec3b actualColor = get_dem_color(dz);output_dem.at<cv::Vec3b>(y,x) = actualColor;// show effect of a 10 meter increase in ocean levelsif( dz < 10 ){add_color( output_dem_flood.at<cv::Vec3b>(y,x), 90, 0, 0 );}// show effect of a 50 meter increase in ocean levelselse if( dz < 50 ){add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 90, 0 );}// show effect of a 100 meter increase in ocean levelselse if( dz < 100 ){add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 0, 90 );}}}// print our heat mapcv::imwrite( "heat-map.jpg" , output_dem );// print the flooding effect imagecv::imwrite( "flooded.jpg", output_dem_flood);return 0;
}

解释: 

在提供的代码片段中,有几个关键函数,它们负责执行特定的任务,如插值、颜色映射和坐标转换。下面是每个关键函数的代码片段和详细解释:

1. **线性插值函数 `lerp`**

cv::Point2d lerp(cv::Point2d const& p1, cv::Point2d const& p2, const double& t){return cv::Point2d(((1 - t) * p1.x) + (t * p2.x), ((1 - t) * p1.y) + (t * p2.y));
}


这个函数执行二维空间中的线性插值。它接受两个点 `p1` 和 `p2`,以及一个插值比率 `t`。当 `t` 从 0 变到 1 时,这个函数会生成从 `p1` 到 `p2` 的一系列点。

2. **颜色插值模板函数 `lerp`**

template <typename DATATYPE, int N>
cv::Vec<DATATYPE,N> lerp(cv::Vec<DATATYPE,N> const& minColor,cv::Vec<DATATYPE,N> const& maxColor,double const& t){cv::Vec<DATATYPE,N> output;for(int i = 0; i < N; i++){output[i] = static_cast<uchar>(((1 - t) * minColor[i]) + (t * maxColor[i]));}return output;
}


这是一个模板函数,用于在两种颜色之间进行插值。它接受两种颜色 `minColor` 和 `maxColor`,以及插值比率 `t`。对于颜色中的每个通道(对于 `cv::Vec3b` 是三个通道),它计算插值后的颜色值。

3. **计算 DEM 颜色 `get_dem_color`**

cv::Vec3b get_dem_color(const double& elevation){// ... 省略了检查颜色范围和插值的代码 ...return lerp(color_range[idx].first, color_range[idx+1].first, t);
}


这个函数根据给定的海拔高度 `elevation` 从预定义的颜色范围内获取对应的颜色。它首先检查海拔高度是否在颜色范围的边界之外,然后找到合适的颜色对进行插值计算。

4. **坐标转换函数 `world2dem`**

cv::Point2d world2dem(const cv::Point2d& coordinate, const cv::Size& dem_size){// ... 省略了计算比例和输出点坐标的代码 ...return output;
}


此函数将世界坐标转换为 DEM 图像的像素坐标。它接受一个世界坐标 `coordinate` 和 DEM 图像的尺寸 `dem_size`,然后计算对应的像素坐标。

5. **坐标转换函数 `pixel2world`**

cv::Point2d pixel2world(const int& x, const int& y, const cv::Size& size){// ... 省略了计算比例和插值坐标的代码 ...return lerp(leftSide, rightSide, rx);
}


这个函数将像素坐标转换为世界坐标。它接受一个像素坐标 `(x, y)` 和图像的尺寸 `size`,然后计算出对应的世界坐标。

6. **添加颜色到像素 `add_color`**

void add_color(cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r){// ... 省略了颜色添加的代码 ...
}


此函数将特定的颜色值(蓝、绿、红通道)添加到像素中。它确保添加的颜色值不会超过 255(因为颜色值是以 0 到 255 的整数表示的)。

7. **主函数 `main`**

int main(int argc, char* argv[]){// ... 省略了加载图像、DEM 数据和颜色范围设置的代码 ...for(int y = 0; y < image.rows; y++){for(int x = 0; x < image.cols; x++){// ... 省略了像素处理的代码 ...}}// ... 省略了保存图像的代码 ...return 0;
}


`main` 函数是程序的入口点。它首先检查命令行参数,然后加载所需的图像和 DEM 数据。接着,它通过两个嵌套循环遍历图像的每个像素,使用上述函数来计算世界坐标、DEM 坐标、海拔高度和颜色,并根据这些信息生成热图和洪水效果图像。

这些函数共同工作,实现了一个地理空间数据可视化的程序,它可以根据 DEM 数据生成热图,并且模拟不同海拔高度下的洪水效果。

如何使用 GDAL 读取栅格数据

此演示使用默认的 OpenCV imread 函数。主要区别在于,为了强制 GDAL 加载映像,您必须使用适当的标志。

 cv::Mat image = cv::imread(argv[1], cv::IMREAD_LOAD_GDAL | cv::IMREAD_COLOR );

加载数字高程模型时,每个像素的实际数值是必不可少的,不能缩放或截断。例如,对于图像数据,表示为值为 1 的双精度值的像素与表示为值为 255 的无符号字符的像素具有相同的外观。对于地形数据,像素值表示以米为单位的高程。为了确保 OpenCV 保留本机值,请在 imread 中使用 GDAL 标志和 ANYDEPTH 标志。

 // load the dem modelcv::Mat dem = cv::imread(argv[2], cv::IMREAD_LOAD_GDAL | cv::IMREAD_ANYDEPTH );

如果您事先知道要加载的 DEM 模型的类型,那么使用断言或其他机制测试 Mat::type() 或 Mat::d epth() 可能是一个安全的选择。NASA 或 DOD 规范文档可以提供各种高程模型的输入类型。主要类型,SRTM 和 DTED,都是签名短裤。

注意

通常应避免使用经度/纬度(地理)坐标

地理坐标系是一个球面坐标系,这意味着将它们与笛卡尔数学一起使用在技术上是不正确的。此演示使用它们来增加可读性,并且足够准确以说明重点。更好的坐标系是通用横轴墨卡托坐标系。

查找拐角坐标

查找图像角坐标的一种简单方法是使用命令行工具 gdalinfo。对于正射校正且包含投影信息的影像,可以使用 USGS EarthExplorer。

\f$> gdalinfo N37W123.hgtDriver: SRTMHGT/SRTMHGT File FormatFiles: N37W123.hgtSize is 3601, 3601Coordinate System is:GEOGCS["WGS 84",DATUM["WGS_1984",... more output ...Corner Coordinates:Upper Left (-123.0001389, 38.0001389) (123d 0' 0.50"W, 38d 0' 0.50"N)Lower Left (-123.0001389, 36.9998611) (123d 0' 0.50"W, 36d59'59.50"N)Upper Right (-121.9998611, 38.0001389) (121d59'59.50"W, 38d 0' 0.50"N)Lower Right (-121.9998611, 36.9998611) (121d59'59.50"W, 36d59'59.50"N)Center (-122.5000000, 37.5000000) (122d30' 0.00"W, 37d30' 0.00"N)... more output ...

结果

以下是程序的输出。使用第一个图像作为输入。对于 DEM 模型,请在此处下载位于 USGS 的 SRTM 文件。

http://dds.cr.usgs.gov/srtm/version2_1/SRTM1/Region_04/N37W123.hgt.zip

输入图像

热图

热图叠加


参考文献:

1、《Reading Geospatial Raster files with GDAL》-----Marvin Smith

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319848.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch自动补全

一、拼音分词器&#xff1a; 当用户在搜索框输入字符时&#xff0c;我们应该提示出与该字符有关的搜索项&#xff0c;如图&#xff1a; 这种根据用户输入的字母&#xff0c;提示完整词条的功能&#xff0c;就是自动补全了。 GET /_analyze {"text":"我爱螺蛳粉…

.Net MAUI 搭建Android 开发环境

一、 安装最新版本 VS 2022 安装时候选择上 .Net MAUI 跨平台开发 二、安装成功后,创建 .Net MAUI 应用 三、使用 VS 自带的 Android SDK 下载 ,Android镜像、编译工具、加速工具 四、使用Vs 自带的 Android Avd 创建虚拟机 五、使用 Android 手机真机调试

【小菜鸟之---Ansible基础详解】

文章目录 1 【Ansible简介】1.1简介1.2 Ansible 特点1.3 Ansible的工作机制1.4Ansible任务工作模式 2【安装部署】2.1安装命令2.2 Ansible配置文件2.3主机清单配置2.4 基于ssh免密登录2.5常用命令 3【Ansible常用模块】3.1 ping模块3.2 shell模块3.3 command模块3.4 copy模块3.…

百度下拉框负面信息如何删除?

百度头条360等搜索引擎&#xff0c;作为人们获取信息的主要途径之一。然而&#xff0c;一些知名的企业或个人可能会面临在搜索的下拉框中出现负面信息的问题&#xff0c;这可能对其声誉和形象造成不良影响。小马识途营销顾问根据自身从业经验&#xff0c;针对这类情况提出以下建…

一、写给Android开发者之harmony入门

一、创建新项目 对比 android-studio&#xff1a;ability类似安卓activity ability分为两种类型(Stage模型) UIAbility和Extensionability&#xff08;提供系统服务和后台任务&#xff09; 启动模式 1、 singleton启动模式&#xff1a;单例 2、 multiton启动模式&#xff1…

【软件测试理论002】认识软件缺陷、缺陷生命周期、缺陷分类

目录 1 认识软件缺陷 1.1 什么是软件缺陷 1.2 缺陷存在哪些方面 1.3 软件缺陷示例 1.4 软件缺陷的表现形式 1.5 软件缺陷产生的原因 1.6 软件缺陷的根源 1.7 软件缺陷修复的费用 2 软件缺陷的信息分类 2.1 软件缺陷的生命周期 2.2 软件缺陷的信息 2.3 软件缺陷分类…

Node.js -- mongoose

文章目录 1. 介绍2. mongoose 连接数据库3. 插入文件4. 字段类型5. 字段值验证6. 文档处理6.1 删除文档6.2 更新文档6.3 读取文档 7. 条件控制8. 个性化读取9. 代码模块化 1. 介绍 Mongoose是一个对象文档模型库&#xff0c;官网http://www.mongoosejs.net/ 方便使用代码操作mo…

CNN实现卫星图像分类(tensorflow)

使用的数据集卫星图像有两类&#xff0c;airplane和lake&#xff0c;每个类别样本量各700张&#xff0c;大小为256*256&#xff0c;RGB三通道彩色卫星影像。搭建深度卷积神经网络&#xff0c;实现卫星影像二分类。 数据链接百度网盘地址&#xff0c;提取码: cq47 1、查看tenso…

Rust Rocket创建第一个hello world的Web程序 Rust Rocket开发常用网址和Rust常用命令

一、Rust Rocket简介 Rust Rocket 是一个用 Rust 语言编写的 Web 应用框架&#xff0c;它结合了 Rust 的安全性和性能优势&#xff0c;以及 Web 开发的便利性。以下是 Rust Rocket 框架的一些优点&#xff1a; 安全性&#xff1a;Rust 是一种注重安全性的编程语言&#xff0c;…

Redis-分片机制

概述 业务需要&#xff1a;由于单台redis内存容量是有限的&#xff0c;无法实现海量的数据实现缓存存储 概念&#xff1a;由多个redis节点协助工作的机制就是redis的分片机制 作用&#xff1a;为了实现redis扩容 特点&#xff1a;分片机制把该机制中包含的多台redis缓存服务…

PostgreSQL和openGauss优化器对一个关联查询的SQL优化改写

PostgreSQL和openGauss数据库优化器在merge join关联查询的SQL优化改写 PostgreSQL 查询计划openGauss 查询计划拓展对比 看腻了文章就来听听视频讲解吧&#xff1a;https://www.bilibili.com/video/BV1oH4y137P7/ 数据库类型数据库版本PostgreSQL16.2openGauss6.0 创建测试表…

【Android】Android应用性能优化总结

AndroidApp应用性能优化总结 最近大半年的时间里&#xff0c;大部分投在了某国内新能源汽车的某款AndroidApp开发上。 由于该App是该款车上&#xff0c;常用重点应用。所以车厂对应用性能的要求比较高。 主要包括&#xff1a; 应用冷启动达到***ms。应用热(温)启动达到***ms应…

C语言 | Leetcode C语言题解之第70题爬楼梯

题目&#xff1a; 题解&#xff1a; int climbStairs(int n) {double sqrt5 sqrt(5);double fibn pow((1 sqrt5) / 2, n 1) - pow((1 - sqrt5) / 2, n 1);return (int) round(fibn / sqrt5); }

Vue通过下拉框选择字典值,并将对应的label以及value值提交到后端

产品品种从字典中获取 产品性质也是从字典中获取 字典当中的保存 dict_type表 dict_data表 在表单提交的方法中 1.因为做的产品性质是多选&#xff0c;它会以数组的方式提交&#xff0c;所以需要先将Json格式转变为String JSON.stringify(this.form.nature) 2.提交表单&…

Java基于Spring Boot框架的课程管理系统(附源码,说明文档)

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…

基于uniapp vue3.0 uView 做一个点单页面(包括加入购物车动画和左右联动)

1、实现效果&#xff1a; 下拉有自定义组件&#xff08;商品卡片、进步器、侧边栏等&#xff09;源码 2、左右联动功能 使用scroll-view来做右边的菜单页&#xff0c;title的id动态绑定充当锚点 <scroll-view :scroll-into-view"toView" scroll-with-animation…

【链表】:链表的带环问题

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;数据结构 &#x1f337;追光的人&#xff0c;终会万丈光芒 前言&#xff1a; 链表的带环问题在链表中是一类比较难的问题&#xff0c;它对我们的思维有一个比较高的要求&#xff0c;但是这一类…

18_Scala面向对象编程trait

文章目录 trait1.定义trait2.向类中混入特质2.1没有父类2.2有父类 3.动态混入3.1动态混入查询功能到公司业务中 4.父类&#xff0c;子类&#xff0c;特质初始化优先级5.Scala功能执行顺序6.常用API trait –特质的学习需要类比Java中的接口&#xff0c;源码编译之后就是interf…

考研数学|《1800》《660》《880》该怎么选?如何有效搭配?

这个简直太好选了&#xff01; 我本人数二130&#xff0c;对于如何选考研资料&#xff0c;那心得太多了&#xff01;看我这一篇就够了&#xff01; 这是对于市面上基本比较出色的习题的一个总结。 我在考研的时候&#xff0c;这几本题集我都做过&#xff0c;其中深度使用的是…

产品AB测试设计

因为vue2项目升级到vue3经历分享1&#xff0c;vue2项目升级到vue3经历分享2&#xff0c;前端系统升级&#xff0c;界面操作也发生改变&#xff0c;为了将影响降到最低&#xff0c;是不能轻易让所有用户使用新系统的。原系统使用好好的&#xff0c;如果新界面用户不喜欢&#xf…