零基础入门学习Python第二阶01生成式(推导式),数据结构

Python语言进阶

重要知识点

  • 生成式(推导式)的用法
  prices = {'AAPL': 191.88,'GOOG': 1186.96,'IBM': 149.24,'ORCL': 48.44,'ACN': 166.89,'FB': 208.09,'SYMC': 21.29}# 用股票价格大于100元的股票构造一个新的字典prices2 = {key: value for key, value in prices.items() if value > 100}print(prices2)

说明:生成式(推导式)可以用来生成列表、集合和字典。

  • 嵌套的列表的坑
  names = ['关羽', '张飞', '赵云', '马超', '黄忠']courses = ['语文', '数学', '英语']# 录入五个学生三门课程的成绩# scores = [[None] * len(courses)] * len(names)scores = [[None] * len(courses) for _ in range(len(names))]for row, name in enumerate(names):for col, course in enumerate(courses):scores[row][col] = float(input(f'请输入{name}{course}成绩: '))print(scores)
  • heapq模块(堆排序)
  """从列表中找出最大的或最小的N个元素堆结构(大根堆/小根堆)"""import heapqlist1 = [34, 25, 12, 99, 87, 63, 58, 78, 88, 92]list2 = [{'name': 'IBM', 'shares': 100, 'price': 91.1},{'name': 'AAPL', 'shares': 50, 'price': 543.22},{'name': 'FB', 'shares': 200, 'price': 21.09},{'name': 'HPQ', 'shares': 35, 'price': 31.75},{'name': 'YHOO', 'shares': 45, 'price': 16.35},{'name': 'ACME', 'shares': 75, 'price': 115.65}]print(heapq.nlargest(3, list1))print(heapq.nsmallest(3, list1))print(heapq.nlargest(2, list2, key=lambda x: x['price']))print(heapq.nlargest(2, list2, key=lambda x: x['shares']))
  • itertools模块
  """迭代工具模块"""import itertools# 产生ABCD的全排列itertools.permutations('ABCD')# 产生ABCDE的五选三组合itertools.combinations('ABCDE', 3)# 产生ABCD和123的笛卡尔积itertools.product('ABCD', '123')# 产生ABC的无限循环序列itertools.cycle(('A', 'B', 'C'))
  • collections模块

    常用的工具类:

    • namedtuple:命令元组,它是一个类工厂,接受类型的名称和属性列表来创建一个类。
    • deque:双端队列,是列表的替代实现。Python中的列表底层是基于数组来实现的,而deque底层是双向链表,因此当你需要在头尾添加和删除元素时,deque会表现出更好的性能,渐近时间复杂度为 O ( 1 ) O(1) O(1)
    • Counterdict的子类,键是元素,值是元素的计数,它的most_common()方法可以帮助我们获取出现频率最高的元素。Counterdict的继承关系我认为是值得商榷的,按照CARP原则,Counterdict的关系应该设计为关联关系更为合理。
    • OrderedDictdict的子类,它记录了键值对插入的顺序,看起来既有字典的行为,也有链表的行为。
    • defaultdict:类似于字典类型,但是可以通过默认的工厂函数来获得键对应的默认值,相比字典中的setdefault()方法,这种做法更加高效。
  """找出序列中出现次数最多的元素"""from collections import Counterwords = ['look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes','the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around','the', 'eyes', "don't", 'look', 'around', 'the', 'eyes','look', 'into', 'my', 'eyes', "you're", 'under']counter = Counter(words)print(counter.most_common(3))

数据结构和算法

  • 算法:解决问题的方法和步骤

  • 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。
    在这里插入图片描述

在这里插入图片描述

  • 排序算法(选择、冒泡和归并)和查找算法(顺序和折半)
  def select_sort(items, comp=lambda x, y: x < y):"""简单选择排序"""items = items[:]for i in range(len(items) - 1):min_index = ifor j in range(i + 1, len(items)):if comp(items[j], items[min_index]):min_index = jitems[i], items[min_index] = items[min_index], items[i]return items
  def bubble_sort(items, comp=lambda x, y: x > y):"""冒泡排序"""items = items[:]for i in range(len(items) - 1):swapped = Falsefor j in range(len(items) - 1 - i):if comp(items[j], items[j + 1]):items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif not swapped:breakreturn items
  def bubble_sort(items, comp=lambda x, y: x > y):"""搅拌排序(冒泡排序升级版)"""items = items[:]for i in range(len(items) - 1):swapped = Falsefor j in range(len(items) - 1 - i):if comp(items[j], items[j + 1]):items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif swapped:swapped = Falsefor j in range(len(items) - 2 - i, i, -1):if comp(items[j - 1], items[j]):items[j], items[j - 1] = items[j - 1], items[j]swapped = Trueif not swapped:breakreturn items
  def merge(items1, items2, comp=lambda x, y: x < y):"""合并(将两个有序的列表合并成一个有序的列表)"""items = []index1, index2 = 0, 0while index1 < len(items1) and index2 < len(items2):if comp(items1[index1], items2[index2]):items.append(items1[index1])index1 += 1else:items.append(items2[index2])index2 += 1items += items1[index1:]items += items2[index2:]return itemsdef merge_sort(items, comp=lambda x, y: x < y):return _merge_sort(list(items), comp)def _merge_sort(items, comp):"""归并排序"""if len(items) < 2:return itemsmid = len(items) // 2left = _merge_sort(items[:mid], comp)right = _merge_sort(items[mid:], comp)return merge(left, right, comp)
  def seq_search(items, key):"""顺序查找"""for index, item in enumerate(items):if item == key:return indexreturn -1
  def bin_search(items, key):"""折半查找"""start, end = 0, len(items) - 1while start <= end:mid = (start + end) // 2if key > items[mid]:start = mid + 1elif key < items[mid]:end = mid - 1else:return midreturn -1
  • 常用算法:

    • 穷举法 - 又称为暴力破解法,对所有的可能性进行验证,直到找到正确答案。
    • 贪婪法 - 在对问题求解时,总是做出在当前看来
    • 最好的选择,不追求最优解,快速找到满意解。
    • 分治法 - 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到可以直接求解的程度,最后将子问题的解进行合并得到原问题的解。
    • 回溯法 - 回溯法又称为试探法,按选优条件向前搜索,当搜索到某一步发现原先选择并不优或达不到目标时,就退回一步重新选择。
    • 动态规划 - 基本思想也是将待求解问题分解成若干个子问题,先求解并保存这些子问题的解,避免产生大量的重复运算。

    穷举法例子:百钱百鸡和五人分鱼。

  # 公鸡5元一只 母鸡3元一只 小鸡1元三只# 用100元买100只鸡 问公鸡/母鸡/小鸡各多少只for x in range(20):for y in range(33):z = 100 - x - yif 5 * x + 3 * y + z // 3 == 100 and z % 3 == 0:print(x, y, z)# A、B、C、D、E五人在某天夜里合伙捕鱼 最后疲惫不堪各自睡觉# 第二天A第一个醒来 他将鱼分为5份 扔掉多余的1条 拿走自己的一份# B第二个醒来 也将鱼分为5份 扔掉多余的1条 拿走自己的一份# 然后C、D、E依次醒来也按同样的方式分鱼 问他们至少捕了多少条鱼fish = 6while True:total = fishenough = Truefor _ in range(5):if (total - 1) % 5 == 0:total = (total - 1) // 5 * 4else:enough = Falsebreakif enough:print(fish)breakfish += 5

贪婪法例子:假设小偷有一个背包,最多能装20公斤赃物,他闯入一户人家,发现如下表所示的物品。很显然,他不能把所有物品都装进背包,所以必须确定拿走哪些物品,留下哪些物品。

名称价格(美元)重量(kg)
电脑20020
收音机204
17510
花瓶502
101
油画909
  """贪婪法:在对问题求解时,总是做出在当前看来是最好的选择,不追求最优解,快速找到满意解。输入:20 6电脑 200 20收音机 20 4钟 175 10花瓶 50 2书 10 1油画 90 9"""class Thing(object):"""物品"""def __init__(self, name, price, weight):self.name = nameself.price = priceself.weight = weight@propertydef value(self):"""价格重量比"""return self.price / self.weightdef input_thing():"""输入物品信息"""name_str, price_str, weight_str = input().split()return name_str, int(price_str), int(weight_str)def main():"""主函数"""max_weight, num_of_things = map(int, input().split())all_things = []for _ in range(num_of_things):all_things.append(Thing(*input_thing()))all_things.sort(key=lambda x: x.value, reverse=True)total_weight = 0total_price = 0for thing in all_things:if total_weight + thing.weight <= max_weight:print(f'小偷拿走了{thing.name}')total_weight += thing.weighttotal_price += thing.priceprint(f'总价值: {total_price}美元')if __name__ == '__main__':main()

分治法例子:[快速排序]

  """快速排序 - 选择枢轴对元素进行划分,左边都比枢轴小右边都比枢轴大"""def quick_sort(items, comp=lambda x, y: x <= y):items = list(items)[:]_quick_sort(items, 0, len(items) - 1, comp)return itemsdef _quick_sort(items, start, end, comp):if start < end:pos = _partition(items, start, end, comp)_quick_sort(items, start, pos - 1, comp)_quick_sort(items, pos + 1, end, comp)def _partition(items, start, end, comp):pivot = items[end]i = start - 1for j in range(start, end):if comp(items[j], pivot):i += 1items[i], items[j] = items[j], items[i]items[i + 1], items[end] = items[end], items[i + 1]return i + 1

回溯法例子:[骑士巡逻]

  """递归回溯法:叫称为试探法,按选优条件向前搜索,当搜索到某一步,发现原先选择并不优或达不到目标时,就退回一步重新选择,比较经典的问题包括骑士巡逻、八皇后和迷宫寻路等。"""import sysimport timeSIZE = 5total = 0def print_board(board):for row in board:for col in row:print(str(col).center(4), end='')print()def patrol(board, row, col, step=1):if row >= 0 and row < SIZE and \col >= 0 and col < SIZE and \board[row][col] == 0:board[row][col] = stepif step == SIZE * SIZE:global totaltotal += 1print(f'第{total}种走法: ')print_board(board)patrol(board, row - 2, col - 1, step + 1)patrol(board, row - 1, col - 2, step + 1)patrol(board, row + 1, col - 2, step + 1)patrol(board, row + 2, col - 1, step + 1)patrol(board, row + 2, col + 1, step + 1)patrol(board, row + 1, col + 2, step + 1)patrol(board, row - 1, col + 2, step + 1)patrol(board, row - 2, col + 1, step + 1)board[row][col] = 0def main():board = [[0] * SIZE for _ in range(SIZE)]patrol(board, SIZE - 1, SIZE - 1)if __name__ == '__main__':main()

动态规划例子:子列表元素之和的最大值。

说明:子列表指的是列表中索引(下标)连续的元素构成的列表;列表中的元素是int类型,可能包含正整数、0、负整数;程序输入列表中的元素,输出子列表元素求和的最大值,例如:

输入:1 -2 3 5 -3 2

输出:8

输入:0 -2 3 5 -1 2

输出:9

输入:-9 -2 -3 -5 -3

输出:-2

  def main():items = list(map(int, input().split()))overall = partial = items[0]for i in range(1, len(items)):partial = max(items[i], partial + items[i])overall = max(partial, overall)print(overall)if __name__ == '__main__':main()

说明:这个题目最容易想到的解法是使用二重循环,但是代码的时间性能将会变得非常的糟糕。使用动态规划的思想,仅仅是多用了两个变量,就将原来 O ( N 2 ) O(N^2) O(N2)复杂度的问题变成了 O ( N ) O(N) O(N)

函数的使用方式

  • 将函数视为“一等公民”

    • 函数可以赋值给变量
    • 函数可以作为函数的参数
    • 函数可以作为函数的返回值
  • 高阶函数的用法(filtermap以及它们的替代品)

  items1 = list(map(lambda x: x ** 2, filter(lambda x: x % 2, range(1, 10))))items2 = [x ** 2 for x in range(1, 10) if x % 2]
  • 位置参数、可变参数、关键字参数、命名关键字参数

  • 参数的元信息(代码可读性问题)

  • 匿名函数和内联函数的用法(lambda函数)

  • 闭包和作用域问题

    • Python搜索变量的LEGB顺序(Local >>> Embedded >>> Global >>> Built-in)

    • globalnonlocal关键字的作用

      global:声明或定义全局变量(要么直接使用现有的全局作用域的变量,要么定义一个变量放到全局作用域)。

      nonlocal:声明使用嵌套作用域的变量(嵌套作用域必须存在该变量,否则报错)。

  • 装饰器函数(使用装饰器和取消装饰器)

    例子:输出函数执行时间的装饰器。

  def record_time(func):"""自定义装饰函数的装饰器"""@wraps(func)def wrapper(*args, **kwargs):start = time()result = func(*args, **kwargs)print(f'{func.__name__}: {time() - start}秒')return resultreturn wrapper

如果装饰器不希望跟print函数耦合,可以编写可以参数化的装饰器。

  from functools import wrapsfrom time import timedef record(output):"""可以参数化的装饰器"""def decorate(func):@wraps(func)def wrapper(*args, **kwargs):start = time()result = func(*args, **kwargs)output(func.__name__, time() - start)return resultreturn wrapperreturn decorate
  from functools import wrapsfrom time import timeclass Record():"""通过定义类的方式定义装饰器"""def __init__(self, output):self.output = outputdef __call__(self, func):@wraps(func)def wrapper(*args, **kwargs):start = time()result = func(*args, **kwargs)self.output(func.__name__, time() - start)return resultreturn wrapper

说明:由于对带装饰功能的函数添加了@wraps装饰器,可以通过func.__wrapped__方式获得被装饰之前的函数或类来取消装饰器的作用。

例子:用装饰器来实现单例模式。

  from functools import wrapsdef singleton(cls):"""装饰类的装饰器"""instances = {}@wraps(cls)def wrapper(*args, **kwargs):if cls not in instances:instances[cls] = cls(*args, **kwargs)return instances[cls]return wrapper@singletonclass President:"""总统(单例类)"""pass

提示:上面的代码中用到了闭包(closure),不知道你是否已经意识到了。还没有一个小问题就是,上面的代码并没有实现线程安全的单例,如果要实现线程安全的单例应该怎么做呢?

线程安全的单例装饰器。

  from functools import wrapsfrom threading import RLockdef singleton(cls):"""线程安全的单例装饰器"""instances = {}locker = RLock()@wraps(cls)def wrapper(*args, **kwargs):if cls not in instances:with locker:if cls not in instances:instances[cls] = cls(*args, **kwargs)return instances[cls]return wrapper

提示:上面的代码用到了with上下文语法来进行锁操作,因为锁对象本身就是上下文管理器对象(支持__enter____exit__魔术方法)。在wrapper函数中,我们先做了一次不带锁的检查,然后再做带锁的检查,这样做比直接加锁检查性能要更好,如果对象已经创建就没有必须再去加锁而是直接返回该对象就可以了。

重要知识点

因为五一的原因,无奈托更了几天,还请大家谅解,从今天开始仍然会每天为大家分享Python的知识,而且从本片博客开始,也正是进入了Python第二阶段,大家一起加油吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/320457.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【强训笔记】day7

NO.1 思路&#xff1a;双指针模拟&#xff0c;begin表示最长数字字符串最后一个字符&#xff0c;而len表示数字字符串的长度&#xff0c;i用来遍历&#xff0c;如果为数字&#xff0c;那么定义j变量继续遍历&#xff0c;直到不为数字&#xff0c;i-j如果大于len&#xff0c;就…

优惠券样式案例

优惠券样式案例 <template><view class"box"><view class"boxItem"><img src"../../../static/come.png" alt"" class"img"/><span class"icon">&#xffe5;</span><s…

cmake进阶:文件操作

一. 简介 前面几篇文章学习了 cmake的文件操作&#xff0c;写文件&#xff0c;读文件。文章如下&#xff1a; cmake进阶&#xff1a;文件操作之写文件-CSDN博客 cmake进阶&#xff1a;文件操作之读文件-CSDN博客 本文继续学习文件操作。主要学习 文件重命名&#xff0c;删…

Flink窗口理论到实践 | 大数据技术

⭐简单说两句⭐ ✨ 正在努力的小叮当~ &#x1f496; 超级爱分享&#xff0c;分享各种有趣干货&#xff01; &#x1f469;‍&#x1f4bb; 提供&#xff1a;模拟面试 | 简历诊断 | 独家简历模板 &#x1f308; 感谢关注&#xff0c;关注了你就是我的超级粉丝啦&#xff01; &a…

vue3中标签的ref属性

组合API-ref属性 在vue2.x中&#xff0c;可以通过给元素添加refxxx属性&#xff0c;然后在代码中通过this.$refs.xxx获取到对应的元素 然而在vue3中时没有$refs这个东西的&#xff0c;因此vue3中通过ref属性获取元素就不能按照vue2的方式来获取。 目标&#xff1a;掌握使用re…

unittest_parameterized批量测试测试用例

import unittest from parameterized import parameterizeddef add(x, y):return xy"""问题&#xff1a;如果有三组数据需要测试&#xff1f;[(1,1,2), (1,2,3), (0,3,3)] """def get_data():return [(1, 2, 3), (3, 0, 3), (2, 1, 3)]# 定义测试…

win10安装DHCP服务--用于2台机器之间搭建简易网络来进入目标机器修改配置

前言&#xff1a; 客户多了&#xff0c;往往会出现各种突发情况。 比如一个客户现场没有DHCP&#xff0c;没有显示器&#xff0c;键盘。 你只有一台笔记本的情况下要配置目标机器的网络。要如何配置&#xff1f;&#xff1f; 这时候就可以使用这篇博客提供的方式了。 Windows…

低功耗UPF设计的经典案列分享

案例1 分享个例子&#xff0c;景芯A72低功耗设计&#xff0c;DBG domain的isolation为何用VDDS_maia_noncpu供电而不是TOP的VDD&#xff1f; 答&#xff1a;因为dbg的上一级是noncpu&#xff0c;noncpu下面分成dbg和两个tbnk。 案例2 景芯A72的低功耗&#xff0c;请问&#…

LangChain-RAG学习之 文档加载器

目录 一、实现原理 二、文档加载器的选择 (一).PDF 加载本地文件 可能需要的环境配置 (二).CSV 1、使用每个文档一行的 CSV 数据加载 CSVLoader 2、自定义 csv 解析和加载 &#xff08;csv_args 3、指定用于 标识文档来源的 列&#xff08;source_column (三)、文件目…

【数据可视化-02】Seaborn图形实战宝典

Seaborn介绍 Seaborn是一个基于Python的数据可视化库&#xff0c;它建立在matplotlib的基础之上&#xff0c;为统计数据的可视化提供了高级接口。Seaborn通过简洁美观的默认样式和绘图类型&#xff0c;使数据可视化变得更加简单和直观。它特别适用于那些想要创建具有吸引力且信…

(数据分析方法)长期趋势分析

目录 一、定义 二、目的 三、方法 1、移动平均法 (1)、简单移动平均法 (2)、加权移动平均法 (3)、指数平滑法 2、最小二乘法 3、线性回归 1、数据预处理 2、观察数据分布建立假设模型 3、定义损失函数 4、批量梯度下降 5、优化 4、LSTM 时序分析 5、特征工程 一…

重写muduo之EPollPoller

1、EPollPoller.h EPollPoller的主要实现&#xff1a;作为poller的派生类&#xff0c;把基类给派生类保留的这些纯虚函数的接口实现出来。 override表示在派生类里面&#xff0c;这些方法是覆盖方法。必须由编译器来保证在基类里面一定有这些函数的接口的声明。在派生类要重写…

动态库和静态库

动态库与静态库 库是写好的现有的&#xff0c;成熟的&#xff0c;可以复用的代码。现实中每个程序都要依赖很多基础的底层库&#xff0c;不可能每个人的代码都从零开始&#xff0c;因此库的存在意义非同寻常。 本质上来说库是一种可执行代码的二进制形式&#xff0c;可以被操作…

灌溉机器人 状压dp

灌溉机器人 题目描述 农田灌溉是一项十分费体力的农活&#xff0c;特别是大型的农田。小明想为农民伯伯们减轻农作负担&#xff0c;最近在研究一款高科技——灌溉机器人。它可以在远程电脑控制下&#xff0c;给农田里的作物进行灌溉。 现在有一片 N 行 M 列的农田。农田的土…

[Java EE] 多线程(八):CAS问题与JUC包

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (90平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

8个细节决定你的活动策划推广成败-华媒舍

活动策划和推广对于一个成功的活动来说至关重要。许多因素会影响活动的成功与否&#xff0c;以下我将介绍8个关键细节&#xff0c;这些细节能够决定活动的策划与推广的成败。 1. 目标定位 活动策划必须明确目标。你需要确定你的活动是为了推广何种产品或服务&#xff0c;吸引什…

简述前后端分离架构案例

Hello , 这里是小恒不会java 。今晚1点写写关于RESTful接口的使用案例&#xff0c;本文会通过django原生js前后端分离的案例简单讲解。本文带你认识一下简化版的前后端分离架构 代码 本文案例代码在GitHub上 https://github.com/lmliheng/fontend前后端分离 先说说什么是前后…

rust将json字符串直接转为map对象或者hashmap对象

有些时候我们还真的不清楚返回的json数据里面到底有哪些数据&#xff0c;数据类型是什么等&#xff0c;这个时候就可以使用批处理的方式将json字符串转为一个对象&#xff0c;然后通过这个对象的get方法来获取json里面的数据。 pub async fn test_json(&self) {let json_st…

『项目整理』易CAR通项目说明文档-我的第一款APP

『项目整理』易CAR通项目说明文档-我的第一款APP 项目介绍功能介绍技术栈介绍实现效果如何运行备注 项目介绍 易CAR通项目是我的第一个Android项目。是一款结合了AR技术的模仿懂车帝的看车软件。因为是初学&#xff0c;所示实现的效果差强人意&#xff0c;很多的功能界面只实现…

【论文阅读】Learning Texture Transformer Network for Image Super-Resolution

Learning Texture Transformer Network for Image Super-Resolution 论文地址Abstract1. 简介2.相关工作2.1单图像超分辨率2.2 Reference-based Image Super-Resolution 3. 方法3.1. Texture TransformerLearnable Texture Extractor 可学习的纹理提取器。Relevance Embedding.…