Linux信号:信号的保存

目录

一、信号在内核中的表示

 二、sigset_t

2.1sigset_t的概念和意义

2.2信号集操作数

三、信号集操作数的使用

3.1sigprocmask

3.2sigpending

3.3sigemptyset

四、代码演示


一、信号在内核中的表示

实际执行信号的处理动作称为信号 递达(Delivery)
信号从产生到递达之间的状态,称为信号 未决(Pending)
进程可以选择 阻塞 (Block ) 某个信号。
被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。
注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。
信号在内核中的表示示意图
每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中
如上图所示:
SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。
如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。

 二、sigset_t

2.1sigset_t的概念和意义

Linux中,常用的信号有31个,内核中则存在一个类似于位图的方式来对该进程的block,peding进行表示,由于不存在0号信号,所以信号就从1号位置开始到31,如果该位置上为1则表示该信号当前存在,为0则表示不存在。

从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。
因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。下一节将详细介绍信号集的各种操作。 阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。
而为了方便统一管理,和安全性考虑,Linux中就设置了一种sigset_t的类型专门用于表示信号集。

2.2信号集操作数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的。
而常用的系统调用接口有如下几个:
#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);
函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有效信号。
函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示 该信号集的有效信号包括系统支持的所有信号。
注意,在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号。

三、信号集操作数的使用

3.1sigprocmask

调用函数 sigprocmask 可以读取或更改进程的信号屏蔽字 ( 阻塞信号集)。
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset); 
返回值:若成功则为0,若出错则为-1
如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值。
如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达。

3.2sigpending

#include <signal.h>sigset_t pendig;
int n=sigpending(&pending);
读取当前进程的未决信号集,通过set参数传出。调用成功则返回0则n=0,出错则返回-1则n=-1。

3.3sigemptyset

清空sigset_t类型内部的数据。

sigset_t pending;
sigemptyset(&pending);
考虑到各个平台的不同,这种方式可以很好解决在栈上生成随机值的情况

四、代码演示

#include <iostream>
#include <signal.h>
#include <unistd.h>
#include <cassert>
#include <sys/wait.h>void PrintSig(sigset_t &pending)
{std::cout << "Pending bitmap: ";for (int signo = 31; signo > 0; signo--){if (sigismember(&pending, signo))//判断该信号是否在信号集中{std::cout << "1";}else{std::cout << "0";}}std::cout << std::endl;
}void handler(int signo)
{sigset_t pending;sigemptyset(&pending);int n = sigpending(&pending); // 正在处理2号信号assert(n == 0);// 3. 打印pending位图中的收到的信号std::cout << "递达中...: ";PrintSig(pending); // 0: 递达之前,pending 2号已经被清0. 1: pending 2号被清0一定是递达之后std::cout << signo << " 号信号被递达处理..." << std::endl;
}int main()
{// 对2号信号进行自定义捕捉 --- 不让进程因为2号信号而终止signal(2, handler);// 1. 屏蔽2号信号sigset_t block, oblock;sigemptyset(&block);sigemptyset(&oblock);sigaddset(&block, 2); // SIGINT --- 根本就没有设置进当前进程的PCB block位图中// 0. for test: 如果我屏蔽了所有信号呢???// for(int signo = 1; signo <= 31; signo++) // 9, 19号信号无法被屏蔽, 18号信号会被做特殊处理//     sigaddset(&block, signo); // SIGINT --- 根本就没有设置进当前进程的PCB block位图中// 1.1 开始屏蔽2号信号,其实就是设置进入内核中int n = sigprocmask(SIG_SETMASK, &block, &oblock);assert(n == 0);// (void)n; // 骗过编译器,不要告警,因为我们后面用了n,不光光是定义std::cout << "block 2 signal success" << std::endl;std::cout << "pid: " << getpid() << std::endl;int cnt = 0;while (true){// 2. 获取进程的pending位图sigset_t pending;sigemptyset(&pending);n = sigpending(&pending);assert(n == 0);// 3. 打印pending位图中的收到的信号PrintSig(pending);cnt++;// 4. 解除对2号信号的屏蔽if (cnt == 20){std::cout << "解除对2号信号的屏蔽" << std::endl;n = sigprocmask(SIG_UNBLOCK, &block, &oblock); // 2号信号会被立即递达, 默认处理是终止进程assert(n == 0);}// 我还想看到pending 2号信号 1->0 : 递达二号信号!sleep(1);}return 0;
}

通过以上代码所演示的现象我们也可以验证两个结论:

1、递达信号的时候一定会把对应的pending位图清0。

2、先清0,再递达。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/330500.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud微服务03-微服务保护-分布式事务-MQ基础-MQ高级

一、微服务保护 1.雪崩问题 如何做好后备方案就是后续&#xff1a; 2.雪崩解决方案 某一个服务的线程是固定的&#xff0c;出现故障线程占满后&#xff0c;就不会让取调用这个服务&#xff0c;对其他服务就没有影响。 3.Sentinel ①初识Sentinel 配置过程&#xff1a;day05-服…

小短片创作-组装场景(一)

1、项目基础设置 通过第三人称模板&#xff0c;创建1个项目 1.自动曝光&#xff1a;关闭&#xff0c;因为要做专业的小短片&#xff0c;曝光需要手动控制。 2.扩展自动曝光中的默认亮度范围&#xff1a;启用 3.全局光照系统&#xff1a;选择屏幕空间光照&#xff08;SSGI&am…

P2P服务端模型配合 Tool.net P2pServerAsync 类使用

Tool.Net 支持的 P2P 服务器模型实例 说明服务器部分相关代码相关调用实例Tcp版本Udp版本 最后附一张思维图 说明 当前文章&#xff0c;仅是Tool.Net 开源库的一个缩影。本次更新V5.0版本以上提供支持。可以提供简单实现P2P功能用于业务开发。 服务器部分相关代码 完整代码&…

远程PLC、工控设备异地调试,贝锐蒲公英异地组网方案简单高效

北京宇东宁科技有限公司专门提供非标机电设备&#xff0c;能够用于金属制品的加工制造。设备主要采用西门子的PLC作为控制系统&#xff0c;同时能够连接上位机用于产量、温度、压力、电机运行数据的监控&#xff0c;以及工厂的大屏呈现需求。目前&#xff0c;客户主要是市场上的…

画图工具之PlantUML插件使用

文章目录 1 PlantUML插件1.1 引言1.2 什么是PlantUML1.3 PlantUML插件1.3.1 IntelliJ IDEA中插件1.3.2 VS Code中插件1.3.3 使用例子 1.4 PlantUML时序图语法1.4.1 声明参与者1.4.2 消息传递1.4.2.1 同步消息1.4.2.2 异步消息1.4.2.3 返回消息1.4.2.4 自调用 1.4.3 生命线&…

allegro 无法删除Xnet

allegro 无法删除Xnet Orcad中打开Constraint Manager之后&#xff0c;再生成网表&#xff0c;导入PCB后就会出现一堆Xnet网络。无法去除Xnet。 解决办法 在原理图ORCAD中&#xff0c; 1、打开Edit Object properties 2、选择Filter by:Capture 3、点击New Property 4、设置…

自动化测试--利用pytest实现整条业务链路测试

​ 概述 前面一章讲解了单个接口的测试&#xff0c;但是实际项目中&#xff0c;因为权限和登录状态的限制&#xff0c;大部分接口没办法直接访问到&#xff0c;这时候我们想访问到一个系统的接口&#xff0c;就需要模拟用户登录拿到用户的token和所拥有的权限之后再将这些信息…

信号:MSK调制和GMSK调制

目录 一、MSK信号 1. MSK信号的第k个码元 2.MSK信号的频率间隔 3.MSK信号的相位连续性 3.1 相位路径 3.2初始相位ψk 4.MSK信号的产生 原理框图 5.MSK信号的频谱图 二、高斯最小频移键控(GMSK) 1.频率响应 2.GMSK调制产生方式 2.1 高斯滤波器法 2.2 正交调制器法…

Linux x86_64 UEFI 启动

文章目录 前言一、UEFI二、Disk device compatibility2.1 GPT 磁盘分区表2.1.1 简介2.1.2 Linux 2.2 ESP&#xff08;EFI&#xff09; 文件系统2.2.1 简介2.2.2 LinuxLinux Kernel EFI Boot Stub 三、UEFI GPT grub23.1 简介3.2 引导方式 3.3 BOOTX64.EFI3.4 shimx64.efi3.5 …

OpenMV学习笔记1——IDE安装与起步

目录 一、OpenMV IDE下载 二、OpenMV界面 三、Hello World&#xff01; 四、将代码烧录到OpenMV实现脱机运行 五、插SD卡&#xff08;为什么买的时候没送&#xff1f;&#xff09; 一、OpenMV IDE下载 浏览器搜索OpenMV官网&#xff0c;进入后点击“立即下载”&#xff0…

市面上前 11 名的 Android 数据恢复软件

Android数据恢复软件是恢复无意中删除的文件或文件夹的必要工具。该软件还将帮助您恢复丢失或损坏的信息。本文介绍提供数据备份和磁盘克隆选项的程序&#xff0c;这些选项有助于在Android设备上恢复文件的过程。 如果您正在寻找一种有效的方法来恢复图像&#xff0c;文档&…

day16|二叉树的属性

相关题目 ● 104.二叉树的最大深度 559.n叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数 二叉树的深度与高度 如图&#xff0c; 二叉树的深度表示&#xff1a;任意一个叶子节点到根节点的距离&#xff0c;是从上往下计数的&#xff0c;因此使用前序遍历…

2024-5-24 石群电路-15

2024-5-24&#xff0c;星期五&#xff0c;22:15&#xff0c;天气&#xff1a;晴&#xff0c;心情&#xff1a;晴。今天最后一天上班&#xff0c;终于要放返校假啦&#xff0c;开心&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;不过放假也不能耽误…

第2天 搭建安全拓展_小迪网络安全笔记

1.常见搭建平台脚本使用: 例如 phpstudy IIS Nginx(俗称中间件): 什么是中间件: 中间件是介于应用系统和系统软件之间的一类软件&#xff0c;它使用系统软件所提供的基础服务&#xff08;功能&#xff09;&#xff0c;衔接网络上应用系统的各个部分或不同的应用&#…

汇编语言(STC89C52)

指令是计算机计算CPU根据人的意图来执行某种操作的命令。一台计算机所执行的全部指令的集合&#xff0c;称为这个CPU的指令系统。而想要使计算机按照人们的要求完成一项工作&#xff0c;就必须让CPU按顺序执行预设的操作&#xff0c;即逐条执行人们编写的指令。这种按照人民要求…

【vue部署】Apache部署vue项目

Apache部署vue项目 Apache 下载安装(windows)1. 下载2. 安装3. 启动服务 vue 部署配置1. 基础配置2. 解决页面刷新问题 Apache 下载安装(windows) 1. 下载 Apache 2.4.59 下载地址&#xff1a;httpd-2.4.59-240404-win64-VS17.zip Visual C Redistributable for Visual Studi…

Python-3.12.0文档解读-内置函数hash()详细说明+记忆策略+常用场景+巧妙用法+综合技巧

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 详细说明 功能描述 参数 返回值 特性 使用示例 注意事项 记忆策略 常用场景 …

【Centos7+JDK1.8】Jenkins安装手册

一、安装环境 Centos7 JDK1.8 Jenkins-2.346.3 JDK1.8安装以及网络配置等 自行搜索资料解决。 二、卸载历史安装的Jenkins&#xff0c;直接全部复制粘贴下面的命令 service jenkins stop yum -y remove jenkins rpm -e jenkins rpm -ql jenkins rm -rf /etc/sysconfig/je…

掌握代码注释:提升代码可读性的秘密武器

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、为什么我们需要注释&#xff1f; 二、如何添加单行注释&#xff1f; 使用井号 # 添加单…

docker实战之搭建MYSQL8.0主从同步

目录 环境配置容器创建主服务器创建MYSQL容器新增my.cnf文件创建用户并授权 从服务器创建MYSQL容器新增my.cnf文件重启MYSQL容器配置主从同步 验证主从同步彩蛋 MySQL 主从同步&#xff08;Master-Slave Replication&#xff09;是一种常用的解决方案&#xff0c;它允许一个主服…