算法的时间复杂度(详解)

前言:

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果

一、算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

复杂度在校招中的考察

常见复杂度对比

 

二、时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i){for (int j = 0; j < N; ++j){++count;}}for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

O(N^2)

N = 10 F(N) = 100

N = 100 F(N) = 10000

N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

三、常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k){++count;}for (int k = 0; k < N; ++k){++count;}printf("%d\n", count);
}

基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k){++count;}printf("%d\n", count);
}

基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)

注:O(1)代表常数次

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

我们分析一下

while (*str)
{if (*str == charcter)return str;else++str;
}

基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

实例5: 

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

基本操作执行最好N次,最坏执行了N*(N-1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

分析二分查找的时间复杂度: 

查找区间的变化:

N
N/2 
N/4
N/8
…… 

1

二分查找什么情况下最坏?查找区间只剩一个数,或者找不到,也就是:N/2/2…/2 = 1

查找了多少次,就是除了多少个2,假设查找了x次 2^x = N

那么查找次数为:x=logN(底数忽略不写)

则时间复杂度: O(logN)

因为写的时候需要支持专业公式,否则不好写底数,时间复杂度当中,为了方便,logN可以省略底数直接写成logN,其他底层不能省略(其他底数也很少出现)

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

递归时间复杂度:所有递归调用次数累加(等差数列) 

通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

如下图所示:每次递归都是以2倍的形式增长,累加求和,我们可以使用等比数列错位相减法

  

计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

这种算法基本上是废了,只有理论意义,实践中太慢了。 

四、复杂度的OJ练习

1.消失的数字

OJ链接:消失的数字

 

思路一:先排序,再依次查找,如果下一个值不等于前一个+1,下一个值就是消失数字,如果我们使用冒泡排序进行排序,就不符合题目要求了,因为它的时间复杂度是O(N^2)

思路二:求和0到N,再依次减去数组中的值,剩下的那个值就是消失数字,累加的时间复杂度为O(N),如果N的数字比较大可能会导致栈溢出。

代码如下:

思路三:我们可以使用异或,把数组中0到N的元素全部异或起来,相同为0相异为1,最后那个数字就是消失的数字,这样还可以防止栈溢出

代码如下:

int missingNumber(int* nums, int numsSize)
{int x = 0;int N = numsSize;for(int i = 0;i<numsSize;i++){x^=nums[i];}for(int j = 0;j<=numsSize;j++){x^=j;}return x;
}

2.轮转数组

 OJ链接:轮转数组

思路一:先写出旋转一次的函数,在调用k次,k的真实旋转次数为k%=numsSize

代码如下:

但是超出时间限制了

我们分析一下:

最坏情况 :k%N等于N-1 -> O(N^2)

最好情况:k%N等于0

时间复杂度为O(N^2)

思路二:我们使用三段逆置,我们先让前n-k个逆置一下,然后再把后k个逆置一下,最后整体逆置。

代码如下:

void reverse(int*a,int left,int raght)
{while(left < raght){int temp = a[left];a[left] = a[raght];a[raght] = temp;++left;--raght;}
}
void rotate(int* nums, int numsSize, int k) 
{k %= numsSize;reverse(nums,0,numsSize-k-1);reverse(nums,numsSize-k,numsSize-1);reverse(nums,0,numsSize-1);
}

时间复杂度为O(N),我们也可以使用memcpy


总结

时间复杂度是衡量算法执行效率的重要指标,它表示算法随输入数据规模增长时执行时间的变化趋势。优化时间复杂度可以节省计算资源、提高系统性能、满足实时性要求,并提升用户体验。在设计算法时,应充分考虑时间复杂度的优化,以实现高效、稳定的性能表现。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336340.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

轻量级 C Logger

目录 一、描述 二、实现效果 三、使用案例 四、内存检测 一、描述 最近实现一个 WS 服务器&#xff0c;内部需要一个日志打印记录服务器程序的运行过程&#xff0c;故自己实现了一个轻量级的 logger&#xff0c;主要包含如下特征&#xff1a; 可输出 debug、info、warn、er…

支付功能、支付平台、支持渠道如何测试?

有学员提问&#xff1a;作为一个支付平台&#xff0c;接入了快钱、易宝或直连银行等多家的渠道&#xff0c;内在的产品流程是自己的。业内有什么比较好的测试办法&#xff0c;来测试各渠道及其支持的银行通道呢&#xff1f; 作为产品&#xff0c;我自己办了十几张银行卡方便测…

echarts-dataset,graphic,dataZoom, toolbox

dataset数据集配置数据 dataset数据集&#xff0c;也可以完成数据的映射&#xff0c;一般用于一段数据画多个图表 例子&#xff1a; options {tooltip: {},dataset: {source: [["product", "2015", "2016", "2017"],["test&q…

网工内推 | 国企信息安全工程师,CISP认证优先

01 浙江省公众信息产业有限公司 &#x1f537;招聘岗位&#xff1a;安全运营工程师 &#x1f537;职责描述&#xff1a; 1. 负责公司内部安全运营平台及其子系统的安全事件管理、事件发现分析、应急响应和系统维护等&#xff1b; 2. 负责风险和漏洞管理&#xff0c;包括漏洞预…

如何在中国网上发布文章

随着互联网的迅猛发展&#xff0c;网上发布文章已经成为一种重要的传播方式。而在中国&#xff0c;作为世界上最大的互联网市场&#xff0c;如何在中国网上发布文章成为了许多人关注的焦点。媒介多多网发稿平台作为一个专业的发稿平台&#xff0c;为广大作者提供了很好的发布文…

上下文视觉提示实现zero-shot分割检测及多visual-prompt改造

文章目录 一、Closed-Set VS Open-set二、DINOv2.1 论文和代码2.2 内容2.3 安装部署2.4 使用效果 三、多visual prompt 改造3.1 获取示例图mask3.2 修改函数参数3.3 推理代码3.4 效果的提升&#xff01; 四、总结 本文主要介绍visual prompt模型DINOv&#xff0c;该模型可输入八…

基于STM32单片机老人体温心率血氧跌倒定位短信报警

一.硬件及设计功能 以STM32F103C8T6为中央处理器&#xff0c;GPS模块用采集数据&#xff0c;将数据发送给单片机后&#xff0c;单片机根据定位计算公式得出当前位置的经纬度信息和时间信息。经过LCD显示器处理后得出和时间信息SIM800模块发送短信到设定的手机号上&#xff0c;将…

基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板

一、开发板资源介绍 该板具有4核心64位的处理器和8TOPS的AI算力&#xff0c;让我们验证一下&#xff0c;在该板上跑深度学习模型的效果如何&#xff1f; 二、配网及远程SSH登录访问系统 在通过microusb连接串口进入开发板调试&#xff0c;在命令行终端执行以下命令 1&#…

Verilog HDL基础知识(一)

引言&#xff1a;本文我们介绍Verilog HDL的基础知识&#xff0c;重点对Verilog HDL的基本语法及其应用要点进行介绍。 1. Verilog HDL概述 什么是Verilog&#xff1f;Verilog是IEEE标准的硬件描述语言&#xff0c;一种基于文本的语言&#xff0c;用于描述最终将在硬件中实现…

antd table列选中效果实现

前言 开发中有一个需要呈现不同时间点各个气象要素的值需求&#xff0c;我觉得一个table可以实现这类数据的展示&#xff0c;只是因为时间点时关注的重点&#xff0c;所以需要列选中效果&#xff0c;清晰的展示时间点下的要素数据。我选择的是antd的table组件&#xff0c;这个…

el-pagination在删除非第一页的最后一条数据遇到的问题

文章目录 前言一、问题展示二、解决方案三、源码解析1、elementui2、elementplus 总结 前言 这个问题是element-ui中的问题&#xff0c;可以从源码中看出来&#xff0c;虽然页码更新了&#xff0c;active也是对的&#xff0c;但是未调用current-change的方法&#xff0c;这里就…

【C语言训练题库】杨辉三角(下三角型和金字塔型)

&#x1f525;博客主页&#x1f525;&#xff1a;【 坊钰_CSDN博客 】 欢迎各位点赞&#x1f44d;评论✍收藏⭐ 目录 题目&#xff1a;打印杨辉三角 1. 下三角型 1.1 图例: 1.2. 解析: 1.3. 代码: 1.4. 运行&#xff1a; 2. 金字塔型 2.1 图例 2.2. 解析 2.2.1. 打印金…

Liunx学习随笔

Linux学习随笔 Linux学习随笔一.前期准备1.安装Vmware Workstation软件2.下载linux镜像3.安装操作系统4.配置静态ip5.下载安装远程连接工具 二.语法2.1 linux哲学思想(原则)2.2 小命令 夕阳无限好&#xff0c;只是近黄昏&#xff0c;时隔一年&#xff0c;重新提笔 没有比脚更远…

装机必备——截图软件PixPin安装教程

装机必备——截图软件PixPin安装教程 软件下载 软件名称&#xff1a;PixPin 1.5 软件语言&#xff1a;简体中文 软件大小&#xff1a;30.1M 系统要求&#xff1a;Windows7或更高&#xff0c; 64位操作系统 硬件要求&#xff1a;CPU2GHz &#xff0c;RAM2G或更高 下载通道①迅…

Kafka原生API使用Java代码-生产者-发送消息

文章目录 1、生产者发送消息1.1、使用EFAK创建主题my_topic31.2、根据kafka官网文档写代码1.3、pom.xml1.4、KafkaProducer1.java1.5、使用EFAK查看主题1.6、再次运行KafkaProducer1.java1.7、再次使用EFAK查看主题 1、生产者发送消息 1.1、使用EFAK创建主题my_topic3 1.2、根…

linnux上安装php zip(ZipArchive)、libzip扩展

安装顺序&#xff1a; 安装zip&#xff08;ZipArchive&#xff09;&#xff0c;需要先安装libzip扩展 安装libzip&#xff0c;需要先安装cmake 按照cmake、libzip、zip的先后顺序安装 下面的命令都是Linux命令 1、安装cmake 确认是否已安装 cmake --version cmake官网 未安装…

C++ 进阶(3)虚函数表解析

个人主页&#xff1a;仍有未知等待探索-CSDN博客 专题分栏&#xff1a;C 请多多指教&#xff01; 目录 一、虚函数表 二、单继承&#xff08;无虚函数覆盖&#xff09; 继承关系表&#xff1a; 对于实例&#xff1a;derive d 的虚函数表&#xff1a; 对于实例&#xff1a;b…

【面试干货】数据库乐观锁,悲观锁的区别,怎么实现

【面试干货】数据库乐观锁&#xff0c;悲观锁的区别&#xff0c;怎么实现 1、乐观锁&#xff0c;悲观锁的区别2、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 1、乐观锁&#xff0c;悲观锁的区别 悲观锁&#xff08;Pessimistic Lo…

智能除螨—wtn6040-8s语音芯片方案引领除螨仪新时代

语音螨仪开发背景&#xff1a; 随着物联网技术的快速发展&#xff0c;除螨仪作为家庭清洁的重要工具&#xff0c;其智能化、人性化的设计成为提升市场竞争力的关键。置入语音芯片的除螨仪&#xff0c;通过开机提示、工作状态反馈、操作指引、故障提醒等内容。用户可以更加直观…

MVC和Filter

目录 MVC和三层架构模型的联系 Filter 概念 作用 应用场景 步骤 简单入门 注解开发 Filter过滤器的生命周期 Filter的拦截路径 过滤链 MVC和三层架构模型的联系 m-->model即模型是三层架构模型的业务层&#xff08;service&#xff09;和持久层(dao) v-->view…