Transformer 动画讲解:数据处理的四大关键步骤

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

汇总合集

《大模型面试宝典》(2024版) 发布!
《大模型实战宝典》(2024版) 发布!


Transformer 大模型,一种基于自注意力机制的神经网络架构,已被广泛应用于各种自然语言处理任务,比如:机器翻译、文本摘要、生成问答等。

图片

从端到端的角度来看,Transformer 大模型中数据的处理流程主要包括四个阶段:首先是嵌入阶段(Embedding),随后是注意力机制阶段(Attention),然后是通过多层感知机(MLPs)进行处理,最后是从模型的表示转换到最终输出的解嵌入阶段(Unembedding),如下图所示:

图片

图:Embedding -> Attention -> MLPs -> Unembedding

下面是对这四个阶段的简要介绍。

Embedding(嵌入)阶段

大模型的输入通常由离散的词汇或符号组成(比如:在英文文本中,每个单词或标点符号都是一个单独的符号)。嵌入层的作用是将这些离散的符号转换成连续的、具有固定维度的向量(通常称为词嵌入)。这些向量能够捕获符号的语义以及上下文信息。

图片

在Transformer 大模型中,无论是编码器(Encoder)还是解码器(Decoder),都包含一个嵌入层。此外,在解码器中,还会添加一个位置嵌入(Positional Embedding)层,用于记录序列中单词的位置信息,这是因为 Transformer 大模型不通过 RNN 或 CNN 等传统结构来直接捕捉序列的顺序信息。

图片

Attention (注意力机制)阶段

注意力机制构成了 Transformer 大模型的基石,它使得大模型能够在产生当前输出时聚焦于输入序列中的各个部分。Transformer 大模型采用了多种类型的注意力机制,其中包括自注意力(Self-Attention)、编码器-解码器注意力(Encoder-Decoder Attention)以及掩码多头注意力(Masked Multi-Head Attention)。

图片

自注意力机制使得大模型能够识别序列内不同位置之间的相互关系,进而把握序列的内在结构。编码器-解码器注意力机制则使得大模型在输出生成过程中能够针对输入序列的特定部分给予关注。在注意力机制的运算过程中,会生成一个注意力权重矩阵,该矩阵揭示了输入序列中每个位置对于当前位置的贡献程度。

图片

MLPs(多层感知机,也称为前馈神经网络)阶段

在注意力机制处理之后,大模型会利用一个或多个全连接层(也称为前馈网络或 MLPs)来进行更深层次的变换和特征提取。

图片

这些全连接层能够捕捉输入数据中的非线性关系,并辅助模型识别更复杂的模式。在 Transformer 大模型中,MLPs 一般被置于自注意力层和归一化层之间,共同构成了所谓的“编码器块”或“解码器块”。

图片

Unembedding(从模型表示到最终输出)阶段

这一过程可以被视作从大模型的内部表示到最终输出格式的转换。

在文本生成任务中,比如:机器翻译,解码器的输出将通过一个线性层和一个 Softmax 函数,以产生一个概率分布,该分布反映了下一个输出词(token)的概率。

图片

而在其他类型的任务中,比如:文本分类,解码器的输出可能直接用于损失函数的计算(比如:交叉熵损失),或者通过其他方法转换成最终的预测结果。

图片

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN

用通俗易懂的方式讲解系列

  • 重磅来袭!《大模型面试宝典》(2024版) 发布!

  • 重磅来袭!《大模型实战宝典》(2024版) 发布!

  • 用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库

  • 用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程

  • 用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain

  • 用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库

  • 用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结

  • 用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调

  • 用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了

  • 用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理

  • 用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南

  • 用通俗易懂的方式讲解:大模型训练过程概述

  • 用通俗易懂的方式讲解:专补大模型短板的RAG

  • 用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践

  • 用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践

  • 用通俗易懂的方式讲解:大模型微调方法总结

  • 用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了

  • 用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!

  • 用通俗易懂的方式讲解:九大最热门的开源大模型 Agent 框架来了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336681.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

读《Diffusion Models: A Comprehensive Survey of Methods and Applications》综述

读《Diffusion Models: A Comprehensive Survey of Methods and Applications》综述 关于此文,我的一个见解想法,重点关注他怎么描述 「Diffusion Model」的引用的,以及未来方向就好了。当然从这篇文章可以知道 「Diffusion Model」的一个基石…

【哈希】用哈希桶封装unordered_map unordered_set

🎉博主首页: 有趣的中国人 🎉专栏首页: C进阶 🎉其它专栏: C初阶 | Linux | 初阶数据结构 小伙伴们大家好,本片文章将会讲解 用哈希桶封装 unordered_map & unordered_set 的相关内容。 如…

Linux系统使用Docker安装Drupal结合内网穿透实现远程访问管理后台

目录 前言 1. Docker安装Drupal 2. 本地局域网访问 3 . Linux 安装cpolar 4. 配置Drupal公网访问地址 5. 公网远程访问Drupal 6. 固定Drupal 公网地址 前言 作者简介: 懒大王敲代码,计算机专业应届生 今天给大家聊聊Linux系统使用Docker安装Drupal…

python在cmd中运行.exe文件时报错:不是内部或外部命令,也不是可运行的程序或批处理文件。的解决办法

添加系统环境变量: 设置环境变量,在用户变量里面添加 【PATH:%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;C:\Windows\SysWOW64】 在系统变量里面添加,【变量名:ComSpec】 【变量值:%SystemRoo…

ROS2从入门到精通2-1:launch多节点启动与脚本配置

目录 0 专栏介绍1 ROS2的启动脚本优化2 ROS2多节点启动案例2.1 C架构2.2 Python架构 3 其他格式的启动文件3.1 .yaml启动3.2 .xml启动 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的…

适合能源企业的文档安全外发系统应该是什么样的?

能源企业是市场经济中的重要组成,也是社会可持续长远发展的关键组成之一,能源行业在开拓新能源业务线、提升产能的日常经营中,也需要与外部合作伙伴、客户间进行密切的业务往来,文档可能涉及多个领域多个类型。 能源供应合同&…

IDEA2023.2单击Setting提示报错:Cannot get children Easy Code

1、单击Setting,不能弹出对话框 2、打开IDE Internal Errors发生错误 原因: 报错信息 "Cannot get children Easy Code" 通常指的是 IntelliJ IDEA 在尝试访问或操作 Easy Code 插件的子设置时遇到了问题。 主要检查是有网络(断断…

【排序算法】选择排序以及需要注意的问题

选择排序的基本思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。 第一种实现方法: void SelectSort(int* arr, int n) {for (int j 0…

安装 Android Studio 2024.1.1.6(Koala SDK35)和过程问题解决

记录更新Android Studio版本及适配Android V应用配置的一些过程问题。 安装包:android-studio-2024.1.1.6-windows.exe原版本:Android Studio23.2.1.23 Koala 安装过程 Uninstall old version 不会删除原本配置(左下角提示) Un…

数据结构第二篇【关于java线性表(顺序表)的基本操作】

【关于java线性表(顺序表)的基本操作】 线性表是什么?🐵🐒🦍顺序表的定义🦧🐶🐵创建顺序表新增元素,默认在数组最后新增在 pos 位置新增元素判定是否包含某个元素查找某个…

如何解决研发数据传输层面安全可控、可追溯的共性需求?

研发数据在企业内部跨网文件交换,是相对较为普遍而频繁的文件流转需求,基于国家法律法规要求及自身安全管理需要,许多企业进行内部网络隔离。不同企业隔离方案各不相同,比如银行内部将网络隔离为生产网、办公网、DMZ区&#xff0c…

Linux编程基础 8.4:epoll工作模式

1 简介 poll机制的工作原理及流程与select类似,但poll可监控的进程数量不受select中第二个因素——fd_set集合容量的限制,用户可在程序中自行设置被监测的文件描述符集的容量,当然poll在阻塞模式下也采用轮询的方式监测文件描述符集&#xf…

相对位姿估计

相对位姿估计 示意图 理论推导 离线数据库: P的位置 P [ X , Y , Z ] T P[X,Y,Z]^{T} P[X,Y,Z]T 相机内参 k 1 k_{1} k1​ 安卓手机: 相机内参 k 2 k_{2} k2​ 两个像素点位置 : p 1 和 p 2 p_1和p_2 p1​和p2​ 公式一:…

Python魔法之旅-魔法方法(04)

目录 一、概述 1、定义 2、作用 二、主要应用场景 1、构造和析构 2、操作符重载 3、字符串和表示 4、容器管理 5、可调用对象 6、上下文管理 7、属性访问和描述符 8、迭代器和生成器 9、数值类型 10、复制和序列化 11、自定义元类行为 12、自定义类行为 13、类…

2年go蓝炎科技、爱诗科技面试经历,期望薪资22K

广州蓝炎科技一面 1、简单自我介绍?用的什么技术栈? 2、go的map是线程安全的吗? 3、Channel一般会在什么场景下使用?往一个未初始化的channel发送数据,会怎样? 4、关于go里头的随机数是线程安全的吗&am…

网卡配置基础知识

1、网络设置方式 首先科普下Virtual Box虚拟机的几种主流的网络设置方式,官方文档: 2解释 Host-only:仅主机模式 虚拟机和宿主机、虚拟机之间能互通,但是不能访问外网,虚拟机和宿主机同网段的其他主机不能互通这种…

VScode远程连接linux服务器开发,误删了文件怎么找回。

因为远程服务器大家都在用,没有足够权限去折腾。找遍了没找到方法,就告诉我远程的文件本地没有缓存啊!我就差点开始重写代码了,后来被我发现了TIMELINE功能,这个功能真的好啊!!!关键…

[算法] 优先算法(三):滑动窗口(上)

🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏:🍕 Collection与数据结构 (92平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 🧀Java …

C++系列——————类和对象(上)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、面向对象的三大特征二、类的引入2.1类的定义 三.类的访问限定符3.1访问限定符的介绍3.2.访问限定符的使用 四、类的作用域五、类的实例化六、类对象模型6.1…

透视AI技术:探索折射技术在去衣应用中的奥秘

引言: 随着人工智能技术的飞速发展,其在图像处理和计算机视觉领域的应用日益广泛。其中,AI去衣技术作为一种颇具争议的应用,引发了广泛的讨论和关注。本文将深入探讨折射技术在AI去衣中的应用及其背后的原理。 一、AI去衣技术简介…